This paper reports that a 5-cm length birefringent photonic crystal fibre is used to tune the output frequency of unamplified 10-fs Ti:sapphire pulses. The zero dispersion of the fibre is at 823 nm and 800 nm for slow and fast fundamental modes, respectively. It is demonstrated that efficient upshift of the output frequency can be achieved when the pumped radiation is polarized along the slow axis of the fibre. When the average input power reaches 320 mW, about 60% of the output energy is located in one peak at 600 nm and is accompanied by depletion of the pulse inside the anomalous dispersion region.
Using an adaptive split-step Fourier method,the coupled nonlinear Schrdinger equations have been numerically solved in this paper.The nonlinear propagation of an ultrashort optical pulse in the birefringent photonic crystal fibers is investigated numerically.It is found that the phenomenon of pulse trapping occurs when the incident pulse is deviating from the principal axis of the fiber with some angle.Owing to the birefringence effect,the incident pulse can be regarded as two orthogonal polarized pulses.The phenomenon of pulse trapping occurs because of the cross phase modulation(XPM) between the two components.As a result,the bandwidth of the supercontinuum(SC) decreases compared with the case that the incident pulse is input along the principal axis.When the polarization direction of the incident pulse is parallel to the fast axis,the bandwidth of the supercontinuum is maximal.