By utilizing hard template method to adjust the mesopore length, and alkali activation to generate micro pores, two hierarchical porous carbons (HPCs) were prepared. With controlling of their mesopore length and the activation conditions, the complex system composed by HPCs and electrolyte was simplified and the effect of mesopore length on the performance of HPCs as electrodes in supercapacitors was investigated. It is found that with the mesopore length getting smaller, the ordered area gets smaller and the aggregation occurs, which is caused by the high surface energy of small grains. HPC with long pores (HPCL) exhibits a donut-like morphology with well-defined ordered mesopores and a regular orientation while in HPC with short pores (HPCS), short mesopores are only orderly distributed in small regions. Longer ordered channels form unobstructed ways for ions transport in the particles while shorter channels, only orderly distributed in small areas, results in blocked paths, which may hinder the electrolyte ions transport. Due to the unobstructed structure, HPCL exhibits good rate capability with a capacitance retention rate over 86% as current density increasing from 50 mA/g to 1000 mA/g. The specific capacitance of HPCL derived from the cyclic voltammetry test at 10 mV/s is up to 201.72 F/g, while the specific capacitance of HPCS is only 193.65 F/g. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.
Sodium-ion batteries (SIBs) have attracted increasing attention in the past decades, because of high over-all abundance of precursors, their even geographical distribution, and low cost. Na3V2(PO4)3 (NVP), atypical sodium super ion conductor (NASlCON)-based electrode material, exhibits pronounced structuralstability, exceptionally high ion conductivity, rendering it a most promising electrode for sodium storage.However. the comparatively low electronic conductivity makes the theoretical capacity of NVP cannot befully accessible even at comparatively low rates, presenting a major drawback for further practical ap-plications, especially when high rate capability is especially important. Thus, many endeavors have beenconformed to increase the surface and intrinsic electrical conductivity of NVP by coating the active mate-rials with a conductive carbon layer, downsizing the NVP particles, combining the NVP particle with vari-ous carbon materials and ion doping strategy. In this review, to get a better understanding on the sodiumstorage in NVP, we firstly present 4 distinct crystal structures in the temperature range of-30℃-225℃ namely α-NVP, β-NVP, β′-NVP and γ-NVP. Moreover, we give an overview of recent approaches to en-hance the surface electrical conductivity and intrinsic electrical conductivity of NVP. Finally, some poten-tial applications of NVP such as in all-climate environment and PHEV, EV fields have been prospected.