您的位置: 专家智库 > >

国家自然科学基金(60675010)

作品数:8 被引量:8H指数:2
相关作者:史忠植何清庄福振宋艳霞杨来更多>>
相关机构:中国科学院中国科学院研究生院天津大学更多>>
发文基金:国家自然科学基金国家重点基础研究发展计划国家高技术研究发展计划更多>>
相关领域:理学自动化与计算机技术生物学文化科学更多>>

文献类型

  • 8篇中文期刊文章

领域

  • 4篇理学
  • 3篇自动化与计算...
  • 1篇生物学
  • 1篇文化科学

主题

  • 3篇APPROX...
  • 2篇QUANTU...
  • 2篇QUERY
  • 2篇ANISOT...
  • 2篇ERROR
  • 2篇MINIMA...
  • 1篇语言处理
  • 1篇直推式学习
  • 1篇算子
  • 1篇推式
  • 1篇自然语言
  • 1篇自然语言处理
  • 1篇唯一性
  • 1篇光滑模
  • 1篇POISSO...
  • 1篇SOME
  • 1篇TERM
  • 1篇UNIVER...
  • 1篇VISUAL
  • 1篇BESOV

机构

  • 2篇中国科学院
  • 1篇南开大学
  • 1篇天津大学
  • 1篇中国科学院研...

作者

  • 2篇何清
  • 2篇史忠植
  • 1篇庄福振
  • 1篇叶培新
  • 1篇许立达
  • 1篇赵冠楠
  • 1篇胡玉梅
  • 1篇杨来
  • 1篇宋艳霞

传媒

  • 1篇科学通报
  • 1篇广西师范大学...
  • 1篇天津大学学报
  • 1篇Transa...
  • 1篇Acta M...
  • 1篇Acta M...
  • 1篇Scienc...
  • 1篇Scienc...

年份

  • 2篇2010
  • 2篇2009
  • 4篇2008
8 条 记 录,以下是 1-8
排序方式:
QUANTUM COMPLEXITY OF THE APPROXIMATION FOR THE CLASSES B(W_p^r([0,1]~d)) AND B(H_p^r([0,1]~d))
2010年
We study the approximation of functions from anisotropic Sobolev classes b(WpR([0, 1]d)) and HSlder-Nikolskii classes B(HPr([0, 1]d)) in the Lq ([0, 1]d) norm with q 〈 p in the quantum model of computation. We determine the quantum query complexity of this problem up to logarithmic factors. It shows that the quantum algorithms are significantly better than the classical deterministic or randomized algorithms.
叶培新胡晓菲
确定性信号的Poisson过程与局部平均采样逼近
2008年
用新的Ditzian光滑模和统一的新型K泛函导出了利用Poisson过程及局部平均采样定义的Szász-Kantorovich算子逼近确定性信号的强逆不等式,进而给出了[0,∞)上的有界连续函数的光滑性与Szász-Kantorovich算子逼近误差的渐近关系.
胡玉梅叶培新宋艳霞赵冠楠
关键词:POISSON过程光滑模
Dynamic Hash TRIE算法的研究与分析
2008年
分词是中文信息处理的基础,词典查询又是分词的基础。另外,搜索引擎需要对访问过的URL进行唯一性检测。针对汉语词典查询和唯一性检测这两个问题,提出Dynamic Hash TRIE词典算法,有效地压缩了节点,没有单链树枝。通过Java和C++编程实验,对比了多个同类算法,证明该算法对于中文词典具有较高的查询性能,灵活的可拓展性。另外还提出了一个词库测试的标准NormTest,可以排除机器性能的干扰来对比各种算法。
杨来何清许立达史忠植
关键词:唯一性程序设计自然语言处理
Lower Bound for Quantum Integration Error on Anisotropic Sobolev Classes
2010年
We study the approximation of the integration of multivariate functions in the quantum model of computation. Using a new reduction approach we obtain a lower bound of the n-th minimal query error on anisotropic Sobolev class R(Wpr([0, 1]d)) (r R+d). Then combining this result with our previous one we determine the optimal bound of n-th minimal query error for anisotropic Hblder- Nikolskii class R(H∞r([0,1]d)) and Sobolev class R(W∞r([0,1]d)). The results show that for these two types of classes the quantum algorithms give significant speed up over classical deterministic and randomized algorithms.
Pei Xin YE
Optimal query error of quantum approximation on some Sobolev classes被引量:2
2008年
We study the approximation of the imbedding of functions from anisotropic and generalized Sobolev classes into L q ([0, 1]d) space in the quantum model of computation. Based on the quantum algorithms for approximation of finite imbedding from L p N to L q N , we develop quantum algorithms for approximating the imbedding from anisotropic Sobolev classes B(W p r ([0, 1] d )) to L q ([0, 1] d ) space for all 1 ? q,p ? ∞ and prove their optimality. Our results show that for p < q the quantum model of computation can bring a speedup roughly up to a squaring of the rate in the classical deterministic and randomized settings.
SONG ZhanJieYE PeiXin
基于混合正则化的无标签领域的归纳迁移学习被引量:6
2009年
近年来迁移学习已经引起了越来越广泛的兴趣,签数据以及源领域数据是不同分布的分类问题,且建立一个归纳分类模型对新来的目标数据进行预测.首先分析了直推式迁移学习(transductive transfer learning)中存在的类别比例漂移问题,然后提出归一化的方法使得预测的类别比例接近于实际样本类别比例.更进一步,提出了一种基于混合正则化框架的归纳迁移学习算法.其中包括目标领域分布结构的流形正则化,预测概率的熵正则化,以及类别比例的期望正则化.这个框架被用于从源领域到目标领域学习的归纳模型中.最后,在实际文本数据集上的实验结果表明,提出的归纳迁移学习模型是有效的,同时该模型可以直接对新来的目标数据进行预测.
庄福振罗平何清史忠植
关键词:直推式学习
The universal fuzzy logical framework of neural circuits and its application in modeling primary visual cortex
2008年
Analytical study of large-scale nonlinear neural circuits is a difficult task. Here we analyze the function of neural systems by probing the fuzzy logical framework of the neural cells' dynamical equations. Al- though there is a close relation between the theories of fuzzy logical systems and neural systems and many papers investigate this subject, most investigations focus on finding new functions of neural systems by hybridizing fuzzy logical and neural system. In this paper, the fuzzy logical framework of neural cells is used to understand the nonlinear dynamic attributes of a common neural system by abstracting the fuzzy logical framework of a neural cell. Our analysis enables the educated design of network models for classes of computation. As an example, a recurrent network model of the primary visual cortex has been built and tested using this approach.
HU Hong1, LI Su2, WANG YunJiu2, QI XiangLin2 & SHI ZhongZhi1 1 Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100080, China
关键词:DYNAMICALFUZZYLOGICVISUALCORTEX
Greedy Algorithm in m-Term Approximation for Periodic Besov Class with Mixed Smoothness
2009年
Nonlinear m-term approximation plays an important role in machine learning, signal processing and statistical estimating. In this paper by means of a nondecreasing dominated function, a greedy adaptive compression numerical algorithm in the best m -term approximation with regard to tensor product wavelet-type basis is pro-posed. The algorithm provides the asymptotically optimal approximation for the class of periodic functions with mixed Besov smoothness in the L q norm. Moreover, it depends only on the expansion of function f by tensor pro-duct wavelet-type basis, but neither on q nor on any special features of f.
宋占杰叶培新
共1页<1>
聚类工具0