Monolithic integration of four 1.55-μm-range InGaAsP/InP distributed feedback (DFB) lasers using varied ridge width with a 4 x 1-multimode-interference (MMI) optical combiner and a semiconductor optical amplifier (SOA) is demon- strated. The average output power and the threshold current are 1.8 mW and 35 mA, respectively, when the injection current of the SOA is 100 mA, with a side mode suppression ratio (SMSR) exceeding 40 dB. The four channels have a 1-nm average channel spacing and can operate separately or simultaneously.
报道了一种基于全息曝光技术实现的20波长分布反馈式(DFB)半导体激光器阵列。传统的DFB半导体激光器光栅一般是利用电子束曝光的方式来实现,这种方式精度较高,然而成本昂贵并且非常耗时,不适合大规模生产应用,而全息方式制作容易,成本很低,适合大规模生产应用。实验结果表明,利用全息曝光技术实现的DFB激光器阵列具有良好的光电特性,激光器阵列的波长偏差在-0.5 nm至0.45 nm,阈值电流在13m A至17 m A,斜效率为0.4 W/A;50 m A偏置电流下,边模抑制比都大于40 d B。
We report the fabrication details of a monolithically integrated electro-absorption modulated distributed feedback laser (EML) based on the ion-implantation induced quantum well intermixing (QWI) technique. To well-preserve material quality in the laser region, thermal-oxide SiO2 is deposited before implantation and the ion-implantation buffer layer is etched before annealing. Thirteen pairs quantum well and barrier are employed to compensate deterioration of the modulator's extinction ratio (ER) caused by the QWI process. The fabricated EML exhibits an 18 dB static ER at 5 V reverse bias. The 3 dB small signal modulation band- width of modulator is over 13.5 GHz indicating that this EML is a suitable light source for over 16 Gb/s optical transmission links.
In this article, we report the first experimental demonstration of the three-phase-shifted (3PS) DFB semiconductor laser with buried heterostructure based on the Reconstruction-Equivalent-Chirp (REC) technique. The simulation results show that the performances of the equivalent 3PS DFB semiconductor laser are nearly the same as those of the true 3PS laser. Compared with the quarter-wave-phase shift (QWS) DFB semiconductor laser, the 3PS DFB semiconductor laser shows better single-longitude-mode (SLM) property even at high injection current with high temperature. However, it only changes the ~un-level sampling structures but the seed grating is uniform using the REC tech- nique. Therefore, its fabrication cost is low.
LU LinLinCAO BaoLiZHANG LiBoTANG SongLI LianYanLI SiMinSHI YueChunCHEN XiangFei
The monolithic integration of four 1.55-μm range InGaAsP/InP distributed feedback lasers with a 4× 1 multimode-interference (MMI) optical combiner using the varied width ridge method is proposed and demonstrated. The average output power is 1.5 mW when the current of LD is 100 mA and the threshold current is 30-35 mA at 25 ℃. The lasing wavelength is 1.55-μm range and 40 dB sidemode suppression ratio is obtained. The four channels can operate separately or simultaneously.
The techniques used for the fabrication of photonic integrated circuit(PIC) chip are introduced briefly.Then a four channel DFB laser array integrated with MMI coupler and semiconductor optical amplifier(SOA) fabricated with butt-joint technique,varied ridge width and holographic exposure techniques is reported.
A 1.65μm three-section distributed Bragg reflector (DBR) laser for CH4 gas sensors is reported. The DBR laser has a wide tunable range covering the R3 and R4 methane absorption line manifolds. The wavelength tunability properties, temperature stability and laser linewidth are characterized and analyzed. Several advantages were demonstrated compared with traditional DFB lasers in harmonic detection.
Selective area growth (SAG) is performed to fabricate monolithically integrated distributed feedback (DFB) laser array by adjusting the width of a SiO2 mask. A strain-compensated-barrier structure is adopted to reduce the accumulated strain and improve the quality of multi-quantum well materials. Varying the strip width of the SAG masks, the DFB laser array with an average channel spacing of 1.47 nm is demonstrated by a conventional holographic method with constant-pitch grating. The threshold current from 14 to 18 mA and over 35-dB side mode suppression ratio (SMSR) are obtained for all DFB lasers in the array.
In this article,we report the first experimental demonstration of an eight-wavelength λ/8 phased-shifted laser array based on the REC technique in the 1.3 μm wavelength domain.Measurement results exhibit good linearity of lasing wavelength with+/-0.35 nm wavelength residual.The SLM property was ensured with SMSRs all larger than 38 dB.Moreover,the directmodulation performance was also tested.The experimental results show that the modulation bandwidth can reach up to 13GHz even at the small injection current of 40 mA and the measured spurious-free dynamic range(SFDR)is up to 87 dB/Hz2/3,which shows good linearity.These measurements show that REC-based λ/8 phased-shifted laser array has good modulation performance and it may find potential application in actual fiber-optic systems.
LU LinLinHUANG LongSHI YueChunGUO RenJiaLIU RuiLI LianYanLI SiMinCHEN XiangFei