Based on light-use efficiency model, an MODIS-derived daily net primary production (NPP) model was developed. In this model, a new model for the fraction of photosynthetically active radiation absorbed by vegetation (FPAR) is developed based on leaf area index (LAI) and albedo parameters, and a pho- tosynthetically active radiation (PAR) is calculated from the combination of Bird's model with aerosol optical thickness and water vapor derived from cloud free MODIS images. These two models are inte- grated into our predicted NPP model, whose most parameters are retrieved from MODIS data. In order to validate our NPP model, the observed NPP in the Qianyanzhou station and the Changbai Mountains station are used to compare with our predicted NPP, showing that they are in good agreement. The NASA NPP products also have been downloaded and compared with the measurements, which shows that the NASA NPP products underestimated NPP in the Qianyanzhou station but overestimated in the Changbai Mountains station in 2004.
FPAR(fraction of photosynthetically active radiation absorbed by the canopy)是植被冠层阻截太阳光合有效辐射的比例,是遥感估算陆地生态系统植被净第一性生产力(NPP)的重要参数。利用Monte Carlo方法模拟光子在植被冠层中的辐射传输过程,以植被冠层二向反射分布函数的模拟来验证模拟的正确性;在此基础上对400—700nm光合作用波段范围内的植被叶片吸收光子辐射比例的FPAR进行模拟。FPAR的Monte Carlo模拟结果,揭示了FPAR与太阳天顶角及植被冠层参数之间的关系。