您的位置: 专家智库 > >

国家自然科学基金(11071246)

作品数:6 被引量:2H指数:1
相关作者:温海瑞王靖华赵引川更多>>
相关机构:华北电力大学中国科学院数学与系统科学研究院北京理工大学更多>>
发文基金:国家自然科学基金更多>>
相关领域:理学更多>>

文献类型

  • 6篇中文期刊文章

领域

  • 6篇理学

主题

  • 2篇FORMUL...
  • 2篇NON-SE...
  • 1篇正则
  • 1篇正则性
  • 1篇特征线
  • 1篇奇异点
  • 1篇方程解
  • 1篇NON-HO...
  • 1篇SHOCK_...
  • 1篇SOLUTI...
  • 1篇SOLUTI...
  • 1篇THREE-...
  • 1篇TIM
  • 1篇TWO-DI...
  • 1篇UNBOUN...
  • 1篇ANALYS...
  • 1篇CONSER...
  • 1篇CYLIND...
  • 1篇FACE
  • 1篇FORM

机构

  • 1篇北京理工大学
  • 1篇华北电力大学
  • 1篇中国科学院数...

作者

  • 1篇赵引川
  • 1篇王靖华
  • 1篇温海瑞

传媒

  • 3篇Acta M...
  • 2篇Acta M...
  • 1篇数学物理学报...

年份

  • 1篇2017
  • 1篇2016
  • 1篇2015
  • 1篇2014
  • 1篇2011
  • 1篇2010
6 条 记 录,以下是 1-6
排序方式:
FORMULA OF GLOBAL SMOOTH SOLUTION FOR NON-HOMOGENEOUS M-D CONSERVATION LAW WITH UNBOUNDED INITIAL VALUE被引量:1
2015年
In this article, we prove the existence and obtain the expression of its solution formula of global smooth solution for non-homogeneous multi-dimensional(m-D) conservation law with unbounded initial value; our methods are new and essentially different with the situation of bounded initial value.
曹高伟胡凯杨小舟
关于Hamilton-Jacobi方程解的正则性和全局结构的注记
2010年
该文考虑高维Hamilton-Jacobi方程的柯西问题.作者证明了从任一初始点出发的特征线永不碰到奇异点集合的充分必要条件是初始函数在该点取到最小值.在此基础上,证明了奇异点集合的道路连通分支和初始函数不取最小值的点集合的道路连通分支之间存在一一对应,而且解的梯度的间断一旦产生就不会消失.特别指出,该文的结果不需要"初始函数梯度在无穷远趋近于零"这一限制条件,而文献[12]中重要的命题2.7和主要结果之一的定理3.3是在这一条件下得到的.
王靖华赵引川温海瑞
关键词:特征线奇异点
Non-selfsimilar Global Solutions and Their Structure for the Multi-dimensional Combustion Models
2017年
We investigate the Chapman-Jouguet model in multi-dimensional space, and construct explicitly its non-selfsimilar Riemann solutions. By the method we apply in this paper, general initial discontinuities can be dealt with, even for complex interaction of combustion waves. Furthermore, we analyze the way in which the area of unburnt gas shrinks.
Kai HUGao-wei CAOXiao-zhou YANG
Riemann Problems for Three-dimensional Combustion Models
2014年
We investigate Chapman-Jouguet models in three-dimensional space by means of generalized char- acteristic analysis. The interaction of detonation, shock waves and contact discontinuity is discussed intensively in this paper. If contact discontinuity appears, the structure of global solutions becomes complex. We deal with this problem when strength of detonation is small.
Kai HUGao-wei CAOXiao-zhou YANG
THE LARGE TIME GENERIC FORM OF THE SOLUTION TO HAMILTON-JACOBI EQUATIONS被引量:1
2011年
We use Hopf-Lax formula to study local regularity of solution to Hamilton- Jacobi (HJ) equations of multi-dimensional space variables with convex Hamiltonian. Then we give the large time generic form of the solution to HJ equation, i.e. for most initial data there exists a constant T 〉 0, which depends only on the Hamiltonian and initial datum, for t 〉 T the solution of the IVP (1.1) is smooth except for ~ smooth n-dimensional hypersurface, across which Du(x, t) is discontinuous. And we show that the hypersurface 1 tends asymptotically to a given hypersurface with rate t-1/4.
王靖华温海瑞赵引川
Envelope and Classification of Global Structures of Solutions for a Class of Two-dimensional Conservation Laws
2016年
Two-dimensional Riemann problem for scalar conservation law are investigated and classification of global structure for its nomselfsimilar solution is given by analysis of structure and classification of envelope for non-selfsimilar 2D rarefaction wave. Initial data has two different constant states which are separated by initial discontinuity. We propose the concepts of plus envelope, minus envelope and mixed envelope, and some new structures and evolution phenomena are discovered by use of these concepts.
Gao-wei CAOKai HUXiao-zhou YANG
关键词:ENVELOPE
共1页<1>
聚类工具0