A counter-streaming flow system is a test-bed to investigate the astrophysical collisionless shock(CS) formation in the laboratory. Electrostatic/electromagnetic instabilities, competitively growing in the system and exciting the CS formation, are sensitive to the flows parameters. One of the most important parameters is the velocity, determining what kind of instability contributes to the shock formation. Here we successfully measure the evolution of the counter-streaming flows within one shot using a multi-pulses imaging diagnostic technique. With the technique, the average velocity of the high-density-part(ne ≥ 8–9 × 10^19cm^-3) of the flow is directly measured to be of ~ 10^6cm/s between 7 ns and 17 ns.Meanwhile, the average velocity of the low-density-part(ne ≤ 2 × 10^19cm^-3) can be estimated as ~ 10^7cm/s. The experimental results show that a collisionless shock is formed during the low-density-part of the flow interacting with each other.
The first experimental measurements of intense(~7 × 1019 W cm-2) laser-driven terahertz(THz) radiation from a solid target which is preheated by an intense pulse of laser-accelerated protons is reported. The total energy of the THz radiation is found to decrease by approximately a factor of 2 compared to a cold target reference. This is attributed to an increase in the scale length of the preformed plasma, driven by proton heating, at the front surface of the target,where the THz radiation is generated. The results show the importance of controlling the preplasma scale length for THz production.
We present the particle-in-cell(PIC) simulation results of the interaction of a high-energy lepton plasma flow with background electron-proton plasma and focus on the acceleration processes of the protons. It is found that the acceleration follows a two-stage process. In the first stage, protons are significantly accelerated transversely(perpendicular to the lepton flow) by the turbulent magnetic field "islands" generated via the strong Weibel-type instabilities. The accelerated protons shows a perfect inverse-power energy spectrum. As the interaction continues, a shockwave structure forms and the protons in front of the shockwave are reflected at twice of the shock speed, resulting in a quasi-monoenergetic peak located near 200 Me V under the simulation parameters. The presented scenario of ion acceleration may be relevant to cosmic-ray generation in some astrophysical environments.
CUI YunQianSHENG ZhengMingLU QuanMingLI YuTongZHANG Jie
Laser-driven magnetic reconnection(LDMR) occurring with self-generated B fields has been experimentally and theoretically studied extensively, where strong B fields of more than megagauss are spontaneously generated in highpower laser–plasma interactions, which are located on the target surface and produced by non-parallel temperature and density gradients of expanding plasmas. For properties of the short-lived and strong B fields in laser plasmas, LDMR opened up a new territory in a parameter regime that has never been exploited before. Here we review the recent results of LDMR taking place in both high and low plasma beta environments. We aim to understand the basic physics processes of magnetic reconnection, such as particle accelerations, scale of the diffusion region, and guide field effects. Some applications of experimental results are also given especially for space and solar plasmas.
We present laboratory measurement and theoretical analysis of silicon K-shell lines in plasmas produced by Shenguang II laser facility, and discuss the application of line ratios to diagnose the electron density and temperature of laser plasmas.Two types of shots were carried out to interpret silicon plasma spectra under two conditions, and the spectra from 6.6 ?A to6.85 ?A were measured. The radiative-collisional code based on the flexible atomic code(RCF) is used to identify the lines, and it also well simulates the experimental spectra. Satellite lines, which are populated by dielectron capture and large radiative decay rate, influence the spectrum profile significantly. Because of the blending of lines, the traditional G value and R value are not applicable in diagnosing electron temperature and density of plasma. We take the contribution of satellite lines into the calculation of line ratios of He-α lines, and discuss their relations with the electron temperature and density.
The process of fast magnetic reconnection driven by intense ultra-short laser pulses in underdense plasma is investigated by particle-in-cell simulations. In the wakefield of such laser pulses, quasi-static magnetic fields at a few mega-Gauss are generated due to nonvanishing cross product ▽(n/) × p. Excited in an inhomogeneous plasma of decreasing density, the quasi-static magnetic field structure is shown to drift quickly both in lateral and longitudinal directions. When two parallel-propagating laser pulses with close focal spot separation are used, such field drifts can develop into magnetic reconnection(annihilation) in their overlapping region, resulting in the conversion of magnetic energy to kinetic energy of particles. The reconnection rate is found to be much higher than the value obtained in the Hall magnetic reconnection model. Our work proposes a potential way to study magnetic reconnection-related physics with short-pulse lasers of terawatt peak power only.
Interactions of two counter-streaming plasmas driven by high power laser pulses are studied on Shenguang II laser facility.Filamentary structures were observed in the interaction region after the electrostatic shockwave decay.Theoretical analysis and observations indicate that the filaments are because of collisionless mechanisms,which are caused by the electromagnetic instability,such as the beam-Weibel instability.Collision experiments were also carried out for comparison and no filaments were generated.
YUAN DaWeiLI YuTongSU LuNingLIAO GuoQianYIN ChuanLeiZHU BaoJunZHANG Jie
The filamentation instability was observed in the interaction of two counter-streaming laser ablated plasma flows, which were supersonic, collisionless, and also closely relevant to astrophysical conditions. The plasma flows were created by irradiating a pair of oppositely standing plastic (CH) foils with Ins-pulsed laser beams of total energy of 1.7 kJ in two laser spots. With characteristics diagnosed in experiments, the calculated features of Weibel-type filaments are in good agreement with measurements.