The glass transition involves more than one dynamic relaxation mechanisms in supercooled liquids,such as α relaxation,slow β relaxation and fast β relaxation and so on.For the traditional theoretical system,α relaxation is believed mainly responsible for the nature of the glass transition as the beginning of the phenomenon.This idea,however,has been open to a big challenge since recent studies have indicated that slow β relaxation closely relates to α relaxation.Slow β relaxation determines the characteristics of α relaxation and is the precursor and the more microscopic base of glass transition behavior.In order to illuminate the significance of slow β relaxation in the fields of the glass transition and the structure of supercooled liquids,the accomplished progress is summarized from different aspects such as on the correlation between α relaxation and slow β relaxation,on the manner of α-slow β relaxation merging,on the energy landscape,on the excess wing and on the thermodynamically phenomenological models.The tendency of investigation in slow β relaxation is also evaluated.
The microstructures and thermal properties of Fe61Co9-xZr8Mo5WxB17 (x=0 and 2) formed under different vacuum conditions were investigated by scanning electron microscopy(SEM), X-ray diffractometry(XRD), transmission electron microscopy(TEM), and conventional dilatometry(DIL). The variation of the non-monotonic effects of tungsten content and vacuum conditions on the glass forming ability(GFA) of Fe-based alloys can be drawn in a schematic diagram. The higher the GFA of alloys, the higher the difference between the thermal expansion coefficients of glassy state and crystalline state(-α), which can be described by the free volume model during dilatometric measurements. Under low and high vacuum conditions, the viscosity and microhardness are improved and the fragility of the Fe-based alloys are decreased by adding tungsten.