有限差分方法(Finite Difference Method,FDM)是波动方程正演数值模拟领域应用最为广泛的方法之一,然而,当模拟区域不规则或者地表起伏不平时,规则网格有限差分法求解波动方程会产生阶梯状近似,影响模拟的精度。借助贴体网格技术,将不规则的物理区域转换为规则的计算域,给出了贴体坐标系下的二维声波方程及其二阶精度的分部求和(Summation by Parts,SBP)有限差分离散格式,采用Fourier谱分析方法分析了该离散格式的稳定性,得到了贴体网格二维声波方程SBP有限差分方法的稳定性条件。数值实验结果表明:1当时间采样间隔的选取满足稳定性条件时,贴体网格SBP有限差分的数值计算过程是稳定的;2与贴体网格中心差分方法相比,贴体网格SBP有限差分方法的稳定性更好。
The existing expressions of elastic impedance,as the generalized form of acoustic impedance,represent the resistance of subsurface media to seismic waves of non-normal incidence,and thus include information on the shear-wave velocity.In this sense,conventional elastic impedance is an attribute of the seismic reflection and not an intrinsic physical property of the subsurface media.The derivation of these expressions shares the approximations made for reflectivity,such as weak impedance contrast andisotropic or weakly anisotropic media,which limits the accuracy of reflectivity reconstruction and seismic inversion.In this paper,we derive exact elastic impedance tensors of seismic P-and S-waves for isotropic media based on the stress-velocity law.Each componentof the impedance tensor represents a unique mechanical property of the medium.Approximations of P-wave elastic impedance tensor components are discussed for seismic inversion and interpretation.Application to synthetic data and real data shows the accuracy and robust interpretation capability of the derived elastic impedance in lithology characterizations.