In a TPC, ion feedback from the readout detector can cause a space-charge effect and distort the electrical field in the drift region. Gating is one of the effective methods to solve this problem, which can block ions at the expense of losing a certain amount of primary electrons. Compared with the traditional design with a wire structure, gating based on GEM foil is more attractive because of its simplicity. In this paper, the factors influencing the electron transmission efficiency are studied with simulations and experiments. After optimizing all these parameters, an electron transmission efficiency over 80% is obtained.
With the help of Maxwell, Ansys and Garfield, a simulation of the electric field and the deviation of electron drift in the drift volume of a GEM-TPC prototype has been accomplished under the following conditions: Field Cages with one-side and double-side strips, with and without a guard ring. The advantage and necessity of a Field Cage with mirror strips and a guard ring were foreseen. According to the simulation results, TU-TPC was modified and tested; a larger effective area and better resolution were achieved.