Lexicalized reordering models are very important components of phrasebased translation systems.By examining the reordering relationships between adjacent phrases,conventional methods learn these models from the word aligned bilingual corpus,while ignoring the effect of the number of adjacent bilingual phrases.In this paper,we propose a method to take the number of adjacent phrases into account for better estimation of reordering models.Instead of just checking whether there is one phrase adjacent to a given phrase,our method firstly uses a compact structure named reordering graph to represent all phrase segmentations of a parallel sentence,then the effect of the adjacent phrase number can be quantified in a forward-backward fashion,and finally incorporated into the estimation of reordering models.Experimental results on the NIST Chinese-English and WMT French-Spanish data sets show that our approach significantly outperforms the baseline method.
The pivot language approach for statistical machine translation(SMT) is a good method to break the resource bottleneck for certain language pairs. However, in the implementation of conventional approaches, pivotside context information is far from fully utilized, resulting in erroneous estimations of translation probabilities. In this study, we propose two topic-aware pivot language approaches to use different levels of pivot-side context. The first method takes advantage of document-level context by assuming that the bridged phrase pairs should be similar in the document-level topic distributions. The second method focuses on the effect of local context. Central to this approach are that the phrase sense can be reflected by local context in the form of probabilistic topics, and that bridged phrase pairs should be compatible in the latent sense distributions. Then, we build an interpolated model bringing the above methods together to further enhance the system performance. Experimental results on French-Spanish and French-German translations using English as the pivot language demonstrate the effectiveness of topic-based context in pivot-based SMT.