Temperature-sensitive molecularly imprinted microgels(MIGs)exhibiting esterase activity were prepared by a reverse emulsion method using dialdehyde dextran-histidine conjugate(PAD-His)as the functional macromonomer and p-nitrophenyl phosphate(NPP)as the stable transition state analogue(TSA)as well as Co2+as the coordination center.The catalytic activity of MIGs was greatly influenced by the amount of the template,and could be modulated by temperature.The hydrolysis kinetics of p-nitrophenyl acetate(NPA)in the presence of MIGs could be described by the Michaelis-Menten equation.The MichaelisMenten constant and maximum velocity were found to be 2.2×105mol/L and 2.04×10 -8mol/h,respectively.In addition,the MIGs were found to have a high catalytic selectivity to NPA.