Electronic components' reliability has become the key of the complex system mission execution. Analog circuit is an important part of electronic components. Its fault diagnosis is far more challenging than that of digital circuit. Simulations and applications have shown that the methods based on BP neural network are effective in analog circuit fault diagnosis. Aiming at the tolerance of analog circuit,a combinatorial optimization diagnosis scheme was proposed with back propagation( BP) neural network( BPNN).The main contributions of this scheme included two parts:( 1) the random tolerance samples were added into the nominal training samples to establish new training samples,which were used to train the BP neural network based diagnosis model;( 2) the initial weights of the BP neural network were optimized by genetic algorithm( GA) to avoid local minima,and the BP neural network was tuned with Levenberg-Marquardt algorithm( LMA) in the local solution space to look for the optimum solution or approximate optimal solutions. The experimental results show preliminarily that the scheme substantially improves the whole learning process approximation and generalization ability,and effectively promotes analog circuit fault diagnosis performance based on BPNN.
To meet the requirement of the real-time, accuracy and multi-target diagnosis of the large radar system,a new fuzzy fault diagnosis method based on directed graph model is proposed in this paper. In this method, the large complex system model is defined using the directed graph model firstly, in which the nodes observing the fault by the hierarchical reconstruction of the directed graph are located, then the fault dependency matrix between these nodes and the fault sources are established. And then, we utilize the sensors' alarm probabilities under different situations to build the characteristic fault observation matrix in the fault observation space. Finally,the optimized corresponding diagnosis method using a fuzzy function, which describes the similarity between the actual observation vector and the fault's characteristic vector, is designed. The experimental results demonstrate that the proposed method can achieve high diagnosis efficiency and accuracy. It can be widely used in the real radar system.