The robust controller design problem for switched polytopic systems under asynchronous switching is addressed.These systems exist in many aviation applications, such as dynamical systems involving rapid variations.A switched polytopic system is established to describe the highly maneuverable technology vehicle within the full flight envelope and a robust dynamic output feedback control method is designed for the switched polytopic system.Combining the Lyapunov-like function method and the average dwell time method, a sufficient condition is derived for the switched polytopic system with asynchronous switching and data dropout to be globally,uniformly and asymptotically stable in terms of linear matrix inequality.The robust dynamic output feedback controller is then applied to the highly maneuverable technology vehicle to illustrate the effectiveness of the proposed approach.The simulation results show that the angle of attack tracking performance is acceptable over the time history and the control surface responses are all satisfying along the full flight trajectory.