High-throughput techniques,such as the yeast-two-hybrid system,produce mass protein-protein interaction data. The new technique makes it possible to predict protein complexes by com-putation. A novel method,named DSDA,has been put forward to predict protein complexes via dense subgraph because the proteins among a protein complex have a much tighter relation among them than with others. This method chooses a node with its neighbors to form the initial subgraph,and chooses a node which has the tightest relation with the subgraph according to greedy strategy,then the chosen node is added into the initial subgraph until the subgraph density is below the threshold value. The ob-tained subgraph is then removed from the network and the process continues until no subgraph can be detected. Compared with other algorithms,DSDA can predict not only non-overlap protein com-plexes but also overlap protein complexes. The experiment results show that DSDA predict as many protein complexes as possible. And in Y78K network the accuracy of DSDA is as twice times as that of RNSC and MCL.
Cloud computing can be realized by service interoperation and its essence is to provide cloud services through network. The development of effective methods to assure the trustworthiness of service interoperation in cloud environment is a very important problem. The essence of cloud security is trust and trust management. Combining quality of service (QoS) with trust model, this paper constructs a QoS-aware and quantitative trust-model that consists of initial trust value, direct trust value, and recommendatory trust value of service, making the provision, discovery, and aggregation of cloud services trustworthy. Hence, it can assure trustworthiness of service interoperation between users and services or among services in cloud environment. At the same time, based on this model, service discovery method based on QoS-aware and quantitative trust-model (TQoS-WSD) is proposed, which makes a solid trust relationship among service requestor, service provider and service recommender, and users can find trustworthy service whose total evaluation value is higher. Corapared to QoS-based service discovery (QoS-WSD) method, it is proved by the experiment for TQoS-WSD method that more accurate result of service discovery will be achieved by service requestor, while reasonable time cost is increased. Meanwhile, TQoS-WSD method strongly resists the effect of service discovery by untrustworthy QoS values and improves service invocation success-rate and thus assures trustworthiness of services interoperation.