Description logic programs (DLP) are an expressive but tractable subset of OWL. This paper ana-lyzes the important under-researched problem of learning DLP from uncertain data. Current studies have rarely explored the plentiful uncertain data populating the semantic web. This algorithm handles uncertain data in an inductive logic programming framework by modifying the performance evaluation criteria. A pseudo-log-likelihood based measure is used to evaluate the performance of different literals under uncer-tainties. Experiments on two datasets demonstrate that the approach is able to automatically learn a rule-set from uncertain data with acceptable accuracy.
动作模型学习可以使Agent主动适应动态环境中的变化,从而提高Agent的自治性,同时也可为动态域建模提供一个初步模型,为后期的模型完善和修改提供了基础。通过结合归纳逻辑程序设计(Inductive Logic Programming,ILP)和回答集程序设计(Answer Set Programming,ASP),设计了一个学习B语言描述的动作模型算法,该算法可以在混合规模的动态域中进行学习,并采用经典规划实例验证了该学习算法的有效性。