Bubble flow video imaging device uses two high speed cameras to capture the bubble rising process in a transpa...
ZHANG Weida, BIAN Yuchen, DONG Feng Tianjin Key Laboratory of Process Measurement and Control, School of Electrical Engineering and Automation Tianjin University, Tianjin 300072, China
A current source is one of the most important circuits in Electrical Impedance Tomography (EIT) hardware syste...
LI Xiaoke, DONG Feng, FU Yan Tianjin Key Laboratory of Process Measurement and Control, School of Electrical Engineering and Automation Tianjin University, Tianjin 300072, China
In order to make the operation of Beer filling production line automatic and efficient, the control of each su...
ZHANG Tianxia, DONG Feng, YUAN Hao Tianjin Key Laboratory of Process Measurement and Control, School of Electrical Engineering and Automation Tianjin University, Tianjin 300072, China
In order to address the bubble formation and movement in air-water two-phase flow,single bubble rising in stagnant water is experimentally studied by digital image processing.Bubbles are released individually from the submerged orifices with different diameters(1.81 mm,2.07 mm,2.98 mm,3.92 mm)at different detachment frequency.Images are recorded by a high-speed video camera and processed by digital image processing technique. The factors impacting the formed volume of bubble are discussed.The experimental results showed that a threshold of gas flow rate(400 mm 3 ·s- 1)divides the bubble formation into two regimes:the constant volume regime and the growing volume regime.Especially for the growing volume regime,the surface tension is taken into account.The bubble volume is consisted of two parts:the surface tension impacting part and the gas volume flow rate impacting part.An improved correlation for bubble volume prediction is developed for the two regimes and better coincidence with the experiment data than the previous models is obtained.
ERT(electrical resistance tomography) is effective method for visualization of multiphase flows,offering some advantages of rapid response and low cost,so as to explore the transient hydrodynamics.Aiming at this target,a fully programmable and reconfigurable FPGA(field programmable gate array)-based Compact PCI(peripheral component interconnect) bus linked sixteen-channel ERT system has been presented.The data acquisition system is carefully designed with function modules of signal generator module;Compact PCI transmission module and data processing module(including data sampling,filtering and demodulating).The processing module incorporates a powerful FPGA with Compact PCI bus for communication,and the measurement process management is conducted in FPGA.Image reconstruction algorithms with different speed and accuracy are also coded for this system.The system has been demonstrated in real time(1400 frames per second for 50 kHz excitation) with signal-noise-ratio above 62 dB and repeatability error below 0.7%.Static experiments have been conducted and the images manifested good resolution relative to the actual object distribution.The parallel ERT system has provided alternative experimental platform for the multiphase flow measurements by the dynamic experiments in terms of concentration and velocity.
Reconstructing the shape of a bubble will lay a firm foundation for further description of the dynamic characteristics of bubbly flow, especially for a single rising bubble or separate bubbles whose interaction could be neglected. In this case, the rising bubble is usually simulated as an ellipsoid consisting of two semi-eUipsoids up and down. Thus the projected image of a bubble consists of two semi-ellipses. In this paper, a method for reconstructing the ellipsoid bubble model is described following digital image processing, using the Hough transform in 2D ellipse parameter extraction which could cover most of the bubble edge points in the image. Then a method based on characteristic symmetric matrix is described to detect 3D bubble ellipsoid model parameters from 2D ellipse parameters of projection planes. This method can be applied to bubbles rising with low-velocity in static flow field much in conformity with the projection theory and the shape variation of the rising bubble. This method does not need to solve nonlinear equation sets and provides an easy way to calculate the characteristic matrix of a space ellipsoid model for deformed bubble. For bubble application, two assumed conditions and a calibration factor are proposed to simplify calculation and detection. Errors of ellipsoid center and three axes are minor. Errors of the three rotation angles have no negative effect on further study on bubbly flow.