Using a detailed, fully coupled chemistry climate model (CCM), the effect of increasing stratospheric H20 on ozone and temperature is investigated. Different CCM time-slice runs have been performed to investigate the chemical and radiative impacts of an assumed 2 ppmv increase in H20. The chemical effects of this H20 increase lead to an overall decrease of the total column ozone (TCO) by ~1% in the tropics and by a maximum of 12% at southern high latitudes. At northern high latitudes, the TCO is increased by only up to 5% due to stronger transport in the Arctic. A 2-ppmv H2O increase in the model's radiation scheme causes a cooling of the tropical stratosphere of no more than 2 K, but a cooling of more than 4 K at high latitudes. Consequently, the TCO is increased by about 2%-6%. Increasing stratospheric H2O, therefore, cools the stratosphere both directly and indirectly, except in the polar regions where the temperature responds differently due to feedbacks between ozone and H2O changes. The combined chemical and radiative effects of increasing H2O may give rise to more cooling in the tropics and middle latitudes but less cooling in the polar stratosphere. The combined effects of H2O increases on ozone tend to offset each other, except in the Arctic stratosphere where both the radiative and chemical impacts give rise to increased ozone. The chemical and radiative effects of increasing H2O cause dynamical responses in the stratosphere with an evident hemispheric asymmetry. In terms of ozone recovery, increasing the stratospheric H2O is likely to accelerate the recovery in the northern high latitudes and delay it in the southern high latitudes. The modeled ozone recovery is more significant between 2000 ~2050 than between 2050~2100, driven mainly by the larger relative change in chlorine in the earlier period.
A springtime tropopause fold event, found to be related to a cold trough intrusion from the north, was detected in the northeastern Tibetan Plateau (TP) based on various observations. A nested high-resolution mesoscale model was employed to investigate the effect of orography on the stratosphere-troposphere exchange. The model was found to be able to capture plausible tropopause fold properties. The propagation of the tropopause fold changed significantly when the terrain height in the model was altered. However, decreasing the terrain height had no significant effect on the morphology of folds. When a fold passed over an elevated surface, a leeside jet stream and a layer of humid air in the middle troposphere tended to develop. This strong leeside descent of air masses and high mid-level potential instability (PI) could give rise to deep upward motions in the leeside and inject tropospheric air into the lower stratosphere. Besides, when the flow encounters an elevated surface, forced lifting together with mid-level PI can trigger deep convective motions on the windward slope. The troposphere to stratosphere transport was found to be persistent and almost stationary over the windward slope of the TP during the evolution of the fold.