In order to improve the multiplexing capability of the optical sensors based on the lower interferential optic fiber sensing technology and the white light fiber-optic Mach-Zehnder interferometer,reflective ladder topology network ( RLT) with tailored formula was proposed. The topology network consists of 6 rungs sensing elements linked by 5 couplers. Two cases with different choices of couplers were contrasted: one is equal coupling ratio,and the other is tailored coupling ratio. Through the simulation of these two cases,the detailed multiplexing capability was analyzed,and accordingly the experiments were also carried out. The simulation results showed that,the tailored formula enhances the multiplexing capability of the structure. In the first case, the maximum number of sensors which can be multiplexed is 8,and in the other case is 12 fiber optic sensors. The experimental results have a good agreement with numerical simulation results. Thus,it is considered expedient to incorporate RLT into large-scale building,grounds,bridges,dams,tunnels,highways and perimeter security.
We develop a pair of tapered-tip single fiber optical tweezers, and study its multi-trapping characteristic. The finite difference time domain method is employed to simulate the trapping force characteristic of this pair of single fiber optical tweezers, and the results show that the number of trapped particles depends on the refractive index and the size of the particles. The trapping force of this pair of tapered-tip single fiber optical tweezers is calibrated by the experimental method, and the experimental results are consistent with the theoretical calculation results. The multi-trapping capability realized by the tapered-tip single fiber optical tweezers will be practical and useful for applications in biomedical research fields.
A special optical fiber is investigated, which has a helical core in the cylindrical cladding. The beam propagation method (BPM) is used for analyzing the impacts of the geometric and physical parameters on the properties of mode losses of the helical-core fiber. The propagation loss is 0.32 dB/m for the fundamental mode and the propagation loss is 20.95 dB/m for the LPu mode in the wavelength range of 1050-1065 nm when the core diameter is 19 μm, the pitch of the core's helix is 2.66 mm, and the offset of the helix core from the center of the fiber axis is 31 μm. The core diameter of the single-mode helical-core fiber well exceeds that of the conventional large-mode-area fiber. The helical-core fiber can provide the effec- tive large-mode-area single-mode operation without coiling fiber or selecting excitation mode.