Memristive technology has been widely explored, due to its distinctive properties, such as nonvolatility, high density,versatility, and CMOS compatibility. For memristive devices, a general compact model is highly favorable for the realization of its circuits and applications. In this paper, we propose a novel memristive model of TiOx-based devices, which considers the negative differential resistance(NDR) behavior. This model is physics-oriented and passes Linn's criteria. It not only exhibits sufficient accuracy(IV characteristics within 1.5% RMS), lower latency(below half the VTEAM model),and preferable generality compared to previous models, but also yields more precise predictions of long-term potentiation/depression(LTP/LTD). Finally, novel methods based on memristive models are proposed for gray sketching and edge detection applications. These methods avoid complex nonlinear functions required by their original counterparts. When the proposed model is utilized in these methods, they achieve increased contrast ratio and accuracy(for gray sketching and edge detection, respectively) compared to the Simmons model. Our results suggest a memristor-based network is a promising candidate to tackle the existing inefficiencies in traditional image processing methods.
As the scale of supercomputers rapidly grows, the reliability problem dominates the system availability. Existing fault tolerance mechanisms, such as periodic checkpointing and process redundancy, cannot effectively fix this problem. To address this issue, we present a new fault tolerance framework using process replication and prefetching (FTRP), combining the benefits of proactive and reactive mechanisms. FTRP incorporates a novel cost model and a new proactive fault tolerance mechanism to improve the application execution efficiency. The novel cost model, called the 'work-most' (WM) model, makes runtime decisions to adaptively choose an action from a set of fault tolerance mechanisms based on failure prediction results and application status. Similar to program locality, we observe the failure locality phenomenon in supercomputers for the first time. In the new proactive fault tolerance mechanism, process replication with process prefetching is proposed based on the failure locality, significantly avoiding losses caused by the failures regardless of whether they have been predicted. Simulations with real failure traces demonstrate that the FTRP framework outperforms existing fault tolerance mechanisms with up to 10% improvement in application efficiency for common failure prediction accuracy, and is effective for petascale systems and beyond.