Wenger's graph Hm(q) is a q-regular bipartite graph of order 2qm constructed by using the mdimensional vector space Fq^m over the finite field Fq. The existence of the cycles of certain even length plays an important role in the study of the accurate order of the Turan number ex(n; C2m) in extremal graph theory. In this paper, we use the algebraic methods of linear system of equations over the finite field and the “critical zero-sum sequences” to show that: if m ≥ 3, then for any integer l with l ≠ 5, 4 ≤ l ≤ 2ch(Fq) (where ch(Fq) is the character of the finite field Fq) and any vertex v in the Wenger's graph Hm(q), there is a cycle of length 21 in Hm(q) passing through the vertex v.