In this paper, a new method for welding SiCp/101A was put forward. It is LPI (liquid-phase-impacting) diffusionwelding. Through LPI diffusion welding SiCp/101A aluminum, the effect of welding parameters on the weldedjoint property was investigated, and the optimal welding parameters were brought forward at the same time. Themicrostructure of joint was analyzed by means of optical-microscope, scanning electron microscope in order to studythe relationship between the macro-properties of joint and the microstructure. The results show that LPI diffusionwelding could be used for welding aluminum matrix composites SiCp/101A successfully.
Through the vacuum diffusion welding SiCp/ZL 101 aluminum with Cu interlayer,the effect of welding parameter and the thickness of Cu on the welded joint property wasinvestigated, and the optimal welding parameters were put forward at the same time. Themicrostructure of joint was analyzed by means of optical-microscope, scanning electron microscope inorder to study the relationship between the macro-properties of joint and the microstructure. Theresults show that diffusion welding with Cu interlayer could be used for welding aluminum matrixcomposites SiCp/ZL 101 successfully.
NIU Jitai, GUO Wei, ZHANG Xinmei, and LIU Xingqiu1) State Key Laboratory of Advanced Welding Production Technology, Harbin Institute of Technology, Harbin 150001, China2) State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai 200030, China
Non-interlayer liquid phase diffusion welding (China Patent) and laser welding methods for aluminum matrix composite are mainly described in this paper. In the non-interlayer liquid phase diffusion welding, the key processing parameters affecting the strength of joint is welding temperature. When temperature rises beyond solidus temperature, the bonded line vanishes. The strength of joint reaches the maximum and becomes constant when welding temperature is close to liquid phase temperature. Oxide film in the interface is no longer detected by SEM in the welded joint. With this kind of technique, particle reinforced aluminum matrix composite Al2 O3p/6061Al is welded successfully, and the joint strength is about 80% of the strength of composite (as-casted). In the laser welding, results indicate that because of the huge specific surface area of the reinforcement, the interfacial reaction between the matrix and the reinforcement is restrained intensively at certain laser power and pulsed laser beam. The laser pulse frequency directly affects the reinforcement segregation and the reinforcement distribution in the weld, so that the weldability of the composite could be improved by increasing the laser pulse frequency. The maximum strength of the weld can reach 70% of the strength of the parent.
Through the vacuum diffusion bonding for SiCp/ZLl01 aluminum matrix composite, the influence of bonding parameters on the joint properties was reported, with the aim to obtain optimal bonding parameters. The microstructureof joints was analyzed by means of optical microscope and scanning electron microscope in order to study the relationship between the macro-properties of joints and the microstructures. It was found that diffusion bonding couldbe used for bonding aluminum matrix composites successfully. Meanwhile, the properties of the matrix and the jointwere all affected by some defects such as the reinforcement aggregation in aluminum matrix composites made bystirring casting.
Wei GUO Jitai NIU Jinfan ZHAI Changli WANG Jie YU Guangtao ZHOU
Through the vacuum diffusion welding SiC_p/ZL101 aluminum with Ni interlayer,the effect of welding parameter and the thickness property of Ni on the welded joint wasinvestigated, and the optimal welding parameters were put forward at the same time. Themicrostructure of joint was analyzed by means of optical-microscope, scanning electron microscope(SEM) in order to study the relationship between the macro-properties of joint and themicrostructure. The results show that diffusion welding with Ni interlayer can be used for weldingaluminum matrix composites SiC_p/ZL101 successfully. Under the welding parameters T=560℃, P=5 MPa,t=60 min, H=14μm, the bonding strength of welded joint can up to 121 MPa. Moreover, the thicknessof interlayer should match with the size of reinforced particles. If the thickness of interlayer istoo thin, it would have no effect on the welded joint beneficially. If the thickness of interlayeris too thick, it would cause the 'no-reinforcement zone' to appear.