This study examines cloud radiative forcing (CRF) in the Asian monsoon region (0° 50°N, 60° 150°E) simulated by Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) AMIP models. During boreal winter, no model realistically reproduces the larger long-wave cloud radiative forcing (LWCF) over the Tibet Plateau (TP) and only a couple of models reasonably capture the larger short-wave CRF (SWCF) to the east of the TP. During boreal summer, there are larger biases for central location and intensity of simulated CRF in active convective regions. The CRF biases are closely related to the rainfall biases in the models. Quantitative analysis further indicates that the correlation between simulated CRF and observations are not high, and that the biases and diversity in SWCF are larger than that in LWCF. The annual cycle of simulated CRF over East Asia (0°-50°N, 100°-145°E) is also examined. Though many models capture the basic annual cycle in tropics, strong LWCF and SWCF to the east of the TP beginning in early spring are underestimated by most models. As a whole, GFDL-CM2.1, MPI-ECHAM5, UKMO-HadGAM1, and MIROC3.2 (medres) perform well for CRF simulation in the Asian monsoon region, and the multi-model ensemble (MME) has improved results over the individual simulations. It is suggested that strengthening the physical parameterizations involved over the TP, and improving cumulus convection processes and model experiment design are crucial to CRF simulation in the Asian monsoon region.
A flux-form semi-Lagrangian transport scheme (FFSL) was implemented in a spectral atmospheric GCM developed and used at IAP/LASG. Idealized numerical experiments show that the scheme is good at shape preserving with less dissipation and dispersion, in comparison with other conventional schemes, hnportantly, FFSL can automatically maintain the positive definition of the transported tracers, which was an underlying problem in the previous spectral composite method (SCM). To comprehensively investigate the impact of FFSL on GCM results, we conducted sensitive experiments. Three main improvements resulted: first, rainfall simulation in both distribution and intensity was notably improved, which led to an improvement in precipitation frequency. Second, the dry bias in the lower troposphere was significantly reduced compared with SCM simulations. Third, according to the Taylor diagram, the FFSL scheme yields simulations that are superior to those using the SCM: a higher correlation between model output and observation data was achieved with the FFSL scheme, especially for humidity in lower troposphere. However, the moist bias in the middle and upper troposphere was more pronounced with the FFSL scheme. This bias led to an over-simulation of precipitable water in comparison with reanalysis data. Possible explanations, as well as solutions, are discussed herein.
Physical processes associated with onset of the 1998 Asian summer monsoon were examined in detail using multi-source datasets. We demonstrated that strong ocean-atmosphere-land interaction in the northern Indian Ocean and tropical Asian area during spring is a fundamental factor that induces the genesis and development of a monsoon onset vortex over the Bay of Bengal (BOB), with the vortex in turn triggering onset of the Asian summer monsoon. In spring, strong surface sensible heat- ing over India and the Indochina Peninsula is transferred to the atmosphere, forming prominent in situ cyclonic circulation, with anticyclonic circulations over the Arabian Sea and northern BOB where the ocean receives abundant solar radiation. The corresponding surface winds along the North Indian Ocean coastal areas cause the ocean to produce the in situ offshore cur- rents and upwelling, resulting in sea surface temperature (SST) cooling. With precipitation on the Indochina Peninsula in- creasing from late April to early May, the offshore current disappears in the eastern BOB or develops into an onshore current, leading to SST increasing. A southwest-northeast oriented spring BOB warm pool with SST 〉31℃forms in a band from the southeastern Arabian Sea to the eastern BOB. In early May, the Somali cross-equatorial flow forms due to the meridional SST gradient between the two hemispheres, and surface sensible heat over the African land surface. The Somali flow overlaps in phase with the anticyclone over the northern Arabian Sea in the course of its inertial fluctuation along the equator. The con- vergent cold northerlies on the eastern side of the anticyclone cause the westerly in the inertial trough to increase rapidly, so that enhanced sensible heat is released from the sea surface into the atmosphere. The cyclonic vorticity forced by such sensible heating is superimposed on the inertial trough, leading to its further increase in vorticity strength. Since atmospheric inertial motion is destroyed, the flow deviates from t
This study reveals the barotropic dynamics associated with the formation and growth of tropical cyclone Nargis in 2008,during its formation stage.Strong equatorial westerlies occurred over the southern Bay of Bengal in association with the arrival of an intraseasonal westerly event during the period 22-24 April 2008. The westerlies,together with strong tropical-subtropical easterlies,constituted a large-scale horizontal shear flow,creating cyclonic vorticity and thereby promoting the incipient disturbance that eventually evolved into Nargis.This basic zonal flow in the lower troposphere was barotropically unstable,with the amplified disturbance gaining more kinetic energy from the easterly jet than from the westerly jet during 25-26 April. This finding suggests that more attention should be paid to the unstable easterly jet when monitoring and predicting the development of tropical cyclones.Energetics analyses reveal that barotropic energy conversion by the meridional gradient of the basic zonal flow was indeed an important energy source for the growth of Nargis.
Using the latest version of SAMIL (Spectral Atmosphere Model of IAP LASG) developed by LASG/IAP,we evaluate the model performance by analyzing rainfall,latent heating structure and other basic fields with two different convective parameterization schemes:Manabe Scheme and Tiedtke Scheme.Results show that convective precipitation is excessively overestimated while stratiform precipitation is underestimated by Tiedtke scheme,thus causing less stratiform rainfall proportion compared with TRMM observation.In contrast,for Manabe scheme stratiform rainfall belt is well simulated,although precipitation center near Bay of Bengal (BOB) spreads eastward and northward associated with unrealistic strong rainfall downstream of the Tibet Plateau.The simulated latent heating structure indicates that Tiedtke scheme has an advantage over Manabe scheme,as the maximum convective latent heating near middle of troposphere is well reproduced.Moreover,the stratiform latent heating structure is also well simulated by Tiedtke scheme with warming above freezing level and cooling beneath freezing level.As for Manabe scheme,the simulated maximum convective latent heating lies near 700 hPa,lower than the observation.Additionally,the warming due to stratiform latent heating extends to the whole vertical levels,which is unreasonable compared with observation.Taylor diagram further indicates that Tiedtke scheme is superior to Manabe scheme as higher correlation between model output and observation data is achieved when Tiedtke scheme is employed,especially for the temperature near 200 hPa.Finally,a possible explanation is addressed for the unrealistic stratiform rainfall by Tiedtke scheme,which is due to the neglect of detrained cloud water and cloud ice during convective process.The speculation is verified through an established sensitivity experiment.
Based on the Lagrangian change equation of vertical vorticity deduced from the equation of three-dimensional Ertel potential vorticity (PVe), the development and movement of vortex are investigated from the view of potential vorticity and diabatic heating (PV Q). It is demonstrated that the asymmetric dis-tribution in the vortex of the non-uniform diabatic heating in both vertical and horizontal can lead to the vortex's development and movement. The theoretical results are used to analyze the development and move-ment of a Tibetan Plateau (TP) vortex (TPV), which appeared over the TP, then slid down and moved eastward in late July 2008, resulting in heavy rainfall in Sichuan Province and along the middle and lower reaches of the Yangtze River. The relative contributions to the vertical vorticity development of the TPV are decomposed into three parts: the diabatic heating, the change in horizontal component of PVe (defined as PV2), and the change in static stability θz. The results show that in most cases, diabatic heating plays a leading role, followed by the change in PV2, while the change of θz usually has a negative impact in a stable atmosphere when the atmosphere becomes more stable, and has a positive contribution when the atmosphere approaches neutral stratification. The intensification of the TPV from 0600 to 1200 UTC 22 July 2008 is mainly due to the diabatic heating associated with the precipitation on the eastern side of the TPV when it uplifted on the up-slope of the northeastern edge of the Sichuan basin. The vertical gradient of diabatic heating makes positive (negative) PVe generation below (above) the maximum of diabatic heating; the positive PVe generation not only intensifies the low-level vortex but also enhances the vertical extent of the vortex as it uplifts. The change in PVe due to the horizontal gradient of diabatic heating depends on the vertical shear of horizontal wind that passes through the center of diabatic heating. The horizontal gradient of diabat
The development of vertical vorticity under adiabatic condition is investigated by virtue of the view of potential vorticity and potential temperature (PV-θ) and from a Lagrangian perspective. A new concept of generalized slantwise vorticity development (GSVD) is introduced for adiabatic condition. The GSVD is a coordinate independent framework of vorticity development (VD), which includes slantwise vorticity development (SVD) when a particle is sliding down the concave slope or up the convex slope of a sharply tilting isentropic surface under stable or unstable condition. The SVD is a special VD for studying the severe weather systems with rapid development of vertical vorticity. In addition, the GSVD clarifies VD and SVD. The criteria for VD and SVD demonstrate that the demand for SVD is much more restricted than the demand for VD. When an air parcel is moving down the concave slope or up the convex slope Of a sharply tilting isentropic surface in a stable stratified atmosphere with its stability decreasing, or in an unstable atmosphere with its stability increasing, i.e., its stability θz approaches zero, its vertical vorticity can develop rapidly if its CD is decreasing. The theoretical results are employed to analyze a Tibetan Plateau (TP) vortex (TPV), which appeared over the TP, then slid down and moved eastward in late July 2008, resulting in heavy rainfall in Sichuan Province and along the middle and lower reaches of the Yangtze River. The change of PV2 contributed to the intensification of the TPV from 0000 to 0600 UTC 22 July 2008 when it slid upward on the upslope of the northeastern edge of the Sichuan basin, since the changes in both horizontal vorticity ~?~ and baroclinity Os have positive effects on the development of vertical vorticity. At 0600 UTC 22 July 2008, the criterion for SVD at 300 K isentropic surface is satisfied, meaning that SVD occurred and contributed significantly to the development of vertical vorticity. The appearance of the stronger signals concerni