Several multi-scale numerical simulation experiments were carried out using the mesoscale modeling systems MM5V3.7 and WRFV2.2 for Greater Beijing to estimate the accuracy of WRF and MM5 in simulating the characteristics and variations of mesoscale local circulation in the atmospheric boundary layer of this area. We simulated the horizontal distribution and diurnal variations of temperature and wind fields near the ground and compared them with Automatic Weather System (AWS) data collected from 19 AWS stations in Beijing. Correlation and error analyses were also made. The modeling and statistical results showed that both WRF and MM5 model the temperature field near the ground significantly better than they model the wind field. The temperature field simulated by MM5 is more coincident than that of WRF with the AWS observation records, while WRF does better than MM5 in simulating the wind field, especially under the condition of gusty wind. Neither WRF nor MM5 can capture the fine structure of urban architectural complexity, which is the main error in the wind field simulation. Both models underestimate the land surface temperature at night and overestimate the temperature during the day. All the above results are supported by statistical analysis.
LIU ZhenXinLIU ShuHuaHU FeiLI JuMA YanJunLIU HePing