In this paper, we propose least-squares images(LS-images) as a basis for a novel edgepreserving image smoothing method. The LS-image requires the value of each pixel to be a convex linear combination of its neighbors, i.e., to have zero Laplacian, and to approximate the original image in a least-squares sense. The edge-preserving property inherits from the edge-aware weights for constructing the linear combination. Experimental results demonstrate that the proposed method achieves high quality results compared to previous state-of-theart works. We also show diverse applications of LSimages, such as detail manipulation, edge enhancement,and clip-art JPEG artifact removal.
Hui WangJunjie CaoXiuping LiuJianmin WangTongrang FanJianping Hu
We introduce an almost-automatic technique for generating 3D car styling surface models based on a single side-view image. Our approach combines the prior knowledge of car styling and deformable curve network model to obtain an automatic modeling process. Firstly, we define the consistent parameterized curve template for 2D and 3D case respectivelyby analyzingthe characteristic lines for car styling. Then, a semi-automatic extraction from a side-view car image is adopted. Thirdly, statistic morphable model of 3D curve network isused to get the initial solution with sparse point constraints.Withonly afew post-processing operations, the optimized curve network models for creating surfaces are obtained. Finally, the styling surfaces are automatically generated using template-based parametric surface modeling method. More than 50 3D curve network models are constructed as the morphable database. We show that this intelligent modeling toolsimplifiesthe exhausted modeling task, and also demonstratemeaningful results of our approach.
Meshed surfaces are ubiquitous in digital geometry processing and computer graphics. The set of attributes associated with each vertex such as the vertex locations, curvature, temperature, pressure or saliency, can be recognized as data living on mani- fold surfaces. So interpolation and approximation for these data are of general interest. This paper presents two approaches for mani- fold data interpolation and approximation through the properties of Laplace-Beltrami operator (Laplace operator defined on a mani- fold surface). The first one is to use Laplace operator minimizing the membrane energy of a scalar function defined on a manifold. The second one is to use bi-Laplace operator minimizing the thin plate energy of a scalar function defined on a manifold. These two approaches can process data living on high genus meshed surfaces. The approach based on Laplace operator is more suitable for manifold data approximation and can be applied manifold data smoothing, while the one based on bi-Laplace operator is more suit- able for manifold data interpolation and can be applied image extremal envelope computation. All the application examples demon- strate that our procedures are robust and efficient.
In this paper, we present a robust subneighborhoods selection technique for feature detection on point clouds scattered over a piecewise smooth surface. The proposed method first identifies all potential features using covariance analysis of the local- neighborhoods. To further extract the accurate features from potential features, Gabriel triangles are created in local neighborhoods of each potential feature vertex. These triangles tightly attach to underlying surface and effectively reflect the local geometry struc- ture. Applying a shared nearest neighbor clustering algorithm on ~ 1 reconstructed normals of created triangle set, we classify the lo- cal neighborhoods of the potential feature vertex into multiple subneighborhoods. Each subneighborhood indicates a piecewise smooth surface. The final feature vertex is identified by checking whether it is locating on the intersection of the multiple surfaces. An advantage of this framework is that it is not only robust to noise, but also insensitive to the size of selected neighborhoods. Ex- perimental results on a variety of models are used to illustrate the effectiveness and robustness of our method.