We report on a systematic experimental study on the fluorescence spectra produced from a femtosecond laser filament in air under a high electric field. The electric field alone was strong enough to create corona discharge(CD). Fluorescence spectra from neutral and ionic air molecules were measured and compared with pure high-voltage CD and pure laser filamentation(FIL). Among them, high electric field assisted laser FIL produced nitrogen fluorescence more efficiently than either pure CD or pure FIL processes. The nonlinear enhancement of fluorescence from the interaction of the laser filament and corona discharging electric field resulted in a more efficient ionization along the laser filament zone, which was confirmed by the spectroscopic measurement of both ionization-induced fluorescence and plasma-scattered 800 nm laser pulses. This is believed to be the key precursor process for filament-guided discharge.
A semi-classical model is utilized to explain the dissociation control of the hydrogen molecular ion (H^-). By ana- lyzing the curve of the dissociation asymmetry parameter as a function of the time delay between the exciting and steering pulses, we find that the dissociation control is dependent not only on the peak intensity and direction of the electric field of the steering pulse, but also on the peak intensity of the exciting pulse.
A passively Q-swithched mode-locked (QML) Tm:LiLuF4 (LLF) laser with a MoS2 saturable absorber (SA) is demonstrated for the first time, to our best knowledge. For the Q-switching mode, the maximum average output power and Q-switched pulse energy are 583 mW and 41.5 μJ, respectively. When the absorbed power is greater than 7.4 W, the passively QML pulse is formed, corresponding to an 83.3-MHz frequency. The modulation depth in Q-switching envelopes is approximately 50%. Results prove that MoS2 is a promising SA for Q-switched and QML solid-state lasers.
The molecular dissociation with a two-laser-pulse scheme is theoretically investigated for the hydrogen molecular ion(H2^+) and its isotopes(HD^+and HT^+). The terahertz pulse is used to steer the electron motion after it has been excited by an ultrashort ultraviolet laser pulse and an unprecedented electron localization ratio can be achieved. With the coupled equations, the mass effect of the nuclei on the effective time of the electron localization control is discussed.
The influence of the carrier-envelope phase on high-harmonic generation is investigated, both experimentally and theoretically, for three different interaction gas media, driven by mid-infrared, few-cycle and CEP-stabiUzed laser pulses. Different patterns of harmonic spectra with varying CEP for the three interaction gas media are observed. Furthermore, in comparing our experiment results to the previous works driven by near-infrared laser pulses, different phenomena are found. Through numerical simulation, we find that for the two different kinds of driving fields, i.e. mid-infrared and near-infrared laser pulses, different kinds of electron trajectories contribute to the generation of high harmonics.
We develop a splicing technology of Ti:sapphire crystals for a high-energy chirped pulse amplifier laser system that can suppress the parasitic lasing to improve the amplification efficiency compared to a large-size single Ti:sapphire crystal amplifier. Theoretical investigations on the characteristics of the amplifier with four splicing Ti:sapphire crystals,such as parasitic-lasing suppression and amplification efficiencies, are carried out. Some possible issues resulting from this splicing technology, including spectral modulation, stretching or splitting of the temporal profile, and the sidelobe generation in the spatial domain(near field and far field), are also investigated. Moreover, the feasibility of the splicing technology is preliminarily demonstrated in an experiment with a small splicing Ti:sapphire crystals amplifier. The temporal profile and spatial distribution of the output pulse from the splicing Ti:sapphire crystal amplifier are discussed in relation to the output pulse from a single Ti:sapphire crystal amplifier.
We numerically study the self-compression of the optical pulses centered at 1.8-μm in a hollow-core fiber (HCF) filled with argon. It is found that the pulse can be self-compressed to 2 optical cycles when the input pulse energy is 0.2-mJ and the gas pressure is 500-mbar (1 bar=10^5 Pa). Inducing a proper positive chirp into the input pulse can lead to a shorter temporal duration after self-compression. These results will benefit the generation of energetic few-cycle mid-infrared pulses.
A femtosecond mid-infrared optical vortex laser can be used for high harmonic generation to extend cutoff energy to the kilo-electron-volt range with orbital angular momentum,as well as other secondary radiations.For these,we demonstrate a high-energy femtosecond 4μm optical vortex laser based on optical parametric chirped pulse amplification(OPCPA)for the first time.The optical vortex seed is generated from a femtosecond 4μm laser by a silicon spiral phase plate with the topological charge l of 1 before the stretcher.Through using a two-stage collinear OPCPA amplifier,the chirped vortex pulse is amplified to 12.4 m J with 200 nm full width at half-maximum bandwidth.After compression,the vortex laser pulse with 9.53 m J,119 fs can be obtained.Furthermore,the vortex characteristics of the laser beam are investigated and evaluated.This demonstration can scale to generate a higher-peak-power vortex mid-IR laser and pave a new way for high field physics.
JUNYU QIANYUJIE PENGYANYAN LIPENGFEI WANGBEIJIE SHAOZHE LIUYUXIN LENGRUXIN LI
We theoretically investigate the delay-dependent attosecond transient absorption spectra in the helium atom dressed by an infrared laser pulse in the wavelength range of 800–2400 nm. By numerically solving the three-dimensional time-dependent Schrdinger equation, we find that the absorption spectrogram exhibits a multiple-fringe structure for using the mid-infrared dressing pulse. The quantitative calculation of the transition matrix between different Floquet states provides direct evidence on the origin of the multiple-fringe structure.Our result shows that the wavelength of the dressing pulse is an important parameter and the unique feature of attosecond transient absorption spectroscopy can be induced in the mid-infrared regime.