2025年1月1日
星期三
|
欢迎来到佛山市图书馆•公共文化服务平台
登录
|
注册
|
进入后台
[
APP下载]
[
APP下载]
扫一扫,既下载
全民阅读
职业技能
专家智库
参考咨询
您的位置:
专家智库
>
>
教育部留学回国人员科研启动基金(2007024)
作品数:
1
被引量:0
H指数:0
相关作者:
胡健
黄琳琳
更多>>
相关机构:
北京交通大学
更多>>
发文基金:
教育部留学回国人员科研启动基金
更多>>
相关领域:
自动化与计算机技术
更多>>
相关作品
相关人物
相关机构
相关资助
相关领域
题名
作者
机构
关键词
文摘
任意字段
作者
题名
机构
关键词
文摘
任意字段
在结果中检索
文献类型
1篇
中文期刊文章
领域
1篇
自动化与计算...
主题
1篇
乳腺
1篇
乳腺肿
1篇
乳腺肿块
1篇
肿块
1篇
决策树
1篇
计算机
1篇
计算机辅助诊...
1篇
二叉决策树
1篇
二叉树
机构
1篇
北京交通大学
作者
1篇
黄琳琳
1篇
胡健
传媒
1篇
信号处理
年份
1篇
2012
共
1
条 记 录,以下是 1-1
全选
清除
导出
排序方式:
相关度排序
被引量排序
时效排序
一种基于二叉树决策分类的乳腺肿块自动检测方法
2012年
乳腺癌是严重威胁女性健康的重要疾病,乳腺癌计算机辅助诊断能够提高乳腺普查的效率和精度。乳腺肿块的自动检测是实现乳腺癌计算机辅助诊断的重要一步。由于肿块和背景之间的对比度低,肿块大小、位置、灰度不确定等,肿块的准确检测非常困难。预处理、疑似区域分割、特征提取以及分类器设计是乳腺肿块分割的关键。本文对经过增强的乳腺X光图像采用一种自适应阈值方法分割出疑似区域,提取疑似区域表征乳腺肿块的面积、紧凑度、圆形度、灰度方差、灰度均值以及偏离度六种特征,最后利用二叉决策树把疑似区域分为两类:肿块和正常乳腺组织。利用50幅图像测试系统的性能,肿块的检测率(TP)为86.18%,且每幅图像的平均误检(FP)为1.18个。实验结果证明了本文提出方法的有效性。
黄琳琳
胡健
关键词:
计算机辅助诊断
乳腺肿块
二叉决策树
全选
清除
导出
共1页
<
1
>
聚类工具
0
执行
隐藏
清空
用户登录
用户反馈
标题:
*标题长度不超过50
邮箱:
*
反馈意见:
反馈意见字数长度不超过255
验证码:
看不清楚?点击换一张