Selective reduction of laterite ores followed by acid leaching is a promising method to recover nickel and cobalt metal, leaving leaching residue as a suitable iron resource. The phase transformation in reduction process with microwave heating was investigated by XRD and the reduction degree of iron was analyzed by chemical method. The results show that the laterite samples mixed with active carbon couple well with microwave and the temperature can reach approximate 1 000 ℃ in 6.5 min. The reduction degree of iron is controlled by both the reductive agent content and the microwave heating time, and the reduction follows Fe2O3→Fe3O4→FeO→Fe sequence. Sulphuric acid leaching test reveals that the recoveries of nickel and iron increase with the iron reduction degree. By properly controlling the reduction degree of iron at 60% around, the nickel recovery can reach about 90% and iron recovery is less than 30%.
The leaching of low-sulfur Ni-Cu matte in acid-oxygen(CuSO4-H2SO4-O2)solution at atmospheric pressure was researched.This matte was obtained from high grade Ni-Cu matte by magnetic separation,which mainly contained Ni-Cu alloy and a small quantity of sulfides.The effects of temperature,agitation speed,oxygen flow rate,particle size,acid concentration and concentration of copper ion were studied.It is found that the matte particles are leached by shrinking core mechanism and the leaching process is electrochemically controlled.In a temperature range of 30-60℃,the surface reaction is rate-limiting step,with an apparent activation energy of 41.9 kJ/mol.But at higher temperature(70-85℃),the rate process is controlled by diffusion through the product layer,with an apparent activation energy of 7.3 kJ/mol.