The cell adhesive properties of decellularized valve scaffolds were promoted by immobilization of valve scaffold with arginine-glycine-aspartic acid (RGD)-containing peptides. Porcine aortic valves were decellularized with trypsin/EDTA, and detergent Triton X-100. With the help of a coupling reagent Sulfo-LC-SPDP, the valve scaffolds were immobilized with glycine-arginine-glycine-aspartic acid-serine-proline-cysteine (GRGDSPC) peptide. X-ray photoelectron spectroscopy (XPS) was used for surface structure analysis. Myofibroblasts harvested from rats were seeded onto the valve scaffolds. Cell count by using microscopy and modified MTT assay were performed to assess cell adhesion. Based on the spectra of XPS, the conjugation of GRGDSPC peptide with decellularized valve scaffolds was confirmed. Both cell count and MTT assay showed that myofibroblasts were much easier to adhere to the modified valve scaffolds, which was also confirmed histologically. Our findings suggest that it is feasible to immobilize RGD-containing peptides onto decellularized valve scaffolds. And the technique can effectively promote cell adhesion, which is beneficial for in vitro tissue engineering of heart valves.
The purpose of this study was to fabricate decelluarized valve scaffold modified with polyethylene glycol nanoparticles loaded with transforming growth factor-β1(TGF-β1),by which to improve the extracellular matrix microenvironment for heart valve tissue engineering in vitro.Polyethylene glycol nanoparticles were obtained by an emulsion-crosslinking method,and their morphology was observed under a scanning electron microscope.Decelluarized valve scaffolds,prepared by using trypsinase and TritonX-100,were modified with nanoparticles by carbodiimide,and then TGF-β1 was loaded into them by adsorption.The TGF-β1 delivery of the fabricated scaffold was measured by asing enzyme-linked immunosorbent assay.Whether unseeded or reseeded with myofibroblast from rats,the morphologic,biochemical and biomechanical characteristics of hybrid scaffolds were tested and compared with decelluarized scaffolds under the same conditions.The enzyme-linked immunosorbent assay revealed a typical delivery of nanoparticles.The morphologic observations and biological data analysis indicated that fabricated scaffolds possessed advantageous biocompatibility and biomechanical property beyond decelluarized scaffolds.Altogether this study proved that it was feasible to fabricate the hybrid scaffold and effective to improve extracellular matrix microenvironment,which is beneficial for an application in heart valve tissue engineering.
Porcine aortic valves were decellularized with trypsinase/EDTA and Triton-100. With the help of a coupling reagent Sulfo-LC-SPDP, the biological valve scaffolds were immobilized with one of RGD (arginine-glycine-aspartic acid) containing peptides, called GRGDSPC peptide. Myofibroblasts harvested from rats were seeded onto them. Based on the spectra of X-ray photoelectron spectroscopy, we could find conjugation of GRGDSPC peptide and the scaffolds. Cell count by both microscopy and MTT assay showed that myofibroblasts were easier to adhere to the modified scaffolds. It is proved that it is feasible to immobilize RGD peptides onto decellularized valve scaffolds, and effective to promote cell adhesion, which is beneficial for constructing tissue engineering heart valves in vitro.