30%Al2O3p/Al-Cu-2.0Mg composite and Al2O3p/Al-Cu-2.5Mg composite with 0.3μm-Al2O3 particles were fabricated. Age-hardening behaviors of two composites and the related matrix alloys were studied by means of Brinell-hardness measurement, DSC and TEM. The results show that the hardness of the composite is improved obviously because of the addition of sub-micron Al2O3 particles. But the hardness increment of Al2O3p/Al composite after aging is lower than that of the related matrix alloy. Moreover, the formation of GP region is suppressed by the addition of sub-micron Al2O3 particles, which broadens the exothermic peak of S' phase. The increment of Mg content has a different influence on accelerating the aging processes of aluminum alloys and the composites, and the hardness also increases.
The liquid-phase coating method was used to deposit Y2O3 ceramic on the surface of α-Al2O3. The coated-Al2O3p/6061AI composites were produced using squeeze casting technology. The microstructure and tensile properties of the composites were analysed and studied. The results showed that the coated AI2O3 particles are able to disperse homogeneously in the aluminum liquid. The microstructure of the composites is more even in comparison with that of as-received powders. The tensile testing indicated that mechanical properties of the coated-AI2O3p/6061AI composites are better than those of uncoated particles. In the composite with 30% volume fraction, the tensile strength, yield strength as well as elongation is increased by 29.8%, 38.4% and 10.3%, respectively. The SEM analysis of fracture indicated that the dimples of the coated-Al2O3p/6061Al composites are more even.
Zhiqiang YU, Gaohui WU, Longtao JIANG and Dongli SUNSchool of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, ChinaPresent address: Department of Materials Science, Fudan University, Shanghai 200433, ChinaPh.D., to
The microstructural characteristic of 1070AI matrix composites reinforced by 0.15 祄 AI2O3 particles whose volume fraction was 40% was investigated by TEM and HREM. The results showed that the interface between the matrix and reinforcements was clean and bonded well, without any interfacial reaction products. There were some preferential crystallographic orientation relationships between Al matrix and AI2O3 particle because of the lattice imperfection on the surface of Al2O3 particles.
The AIN particle reinforced aluminum matrix composites with 50% volume fraction were fabricated by squeeze-casting technology. The thermal expansion behavior and its response to thermal cycling were studied between 20℃ and 400℃. Compared with four theoretical models, the measured CTEs of the composite lie within the elastic bounds derived by Schapery’s analysis. Schapery’s model and Kerner’s model agree well with the CTEs of the composites at lower temperature and elevated temperature, respectively. Strain hysteresis was observed between heating and cooling curves during cycling. This was attributed primarily to the anelastic behavior of the matrix induced by matrix residual stresses.
Qiang ZHANG, Gaohui WU, Dongli SUN and Bofeng LUANSchool of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China