At the interface between the lower atmosphere and sea surface,sea spray might significantly influence air-sea heat fluxes and subsequently,modulate upper ocean temperature during a typhoon passage. The effects of sea spray were introduced into the parameterization of sea surface roughness in a 1-D turbulent model,to investigate the effects of sea spray on upper ocean temperature in the Kuroshio Extension area,for the cases of two real typhoons from 2006,Yagi and Soulik. Model output was compared with data from the Kuroshio Extension Observatory(KEO),and Reynolds and AMSRE satellite remote sensing sea surface temperatures. The results indicate drag coefficients that include the spray effect are closer to observations than those without,and that sea spray can enhance the heat fluxes(especially latent heat flux) considerably during a typhoon passage. Consequently,the model results with heat fluxes enhanced by sea spray simulate better the cooling process of the SST and upper-layer temperature profiles. Additionally,results from the simulation of the passage of typhoon Soulik(that passed KEO quickly),which included the sea spray effect,were better than for the simulated passage of typhoon Yagi(that crossed KEO slowly). These promising 1-D results could provide insight into the application of sea spray in general circulation models for typhoon studies.
Upper ocean heat content is a factor critical to the intensity change of tropical cyclones(TCs). Because of the inhomogeneity of in situ observations in the North Indian Ocean,gridded temperature/salinity(T/S) profiles were derived from satellite data for 1993–2012 using a linear regression method. The satellite derived T/S dataset covered the region of 10°S–32°N,25°–100°E with daily temporal resolution,0.25°×0.25° spatial resolution,and 26 vertical layers from the sea surface to a depth of 1 000 m at standard layers. Independent Global Temperature Salinity Profile Project data were used to validate the satellite derived T/S fields. The analysis confirmed that the satellite derived temperature field represented the characteristics and vertical structure of the temperature field well. The results demonstrated that the vertically averaged root mean square error of the temperature was 0.83 in the upper 1 000 m and the corresponding correlation coefficient was 0.87,which accounted for 76% of the observed variance. After verification of the satellite derived T/S dataset,the TC heat potential(TCHP) was verified. The results show that the satellite derived values were coherent with observed TCHP data with a correlation coefficient of 0.86 and statistical significance at the 99% confidence level. The intensity change of TC Gonu during a period of rapid intensification was studied using satellite derived TCHP data. A delayed effect of the TCHP was found in relation to the intensity change of Gonu,suggesting a lag feature in the response of the inner core of the TC to the ocean.
We investigated the Stokes drift-driven ocean currents and Stokes drift-induced wind energy input into the upper ocean using a two-way coupled wave-current modeling system that consists of the Princeton Ocean Model generalized coordinate system (POMgcs), Simulating WAves Nearshore (SWAN) wave model, and the Model Coupling Toolkit (MCT). The Coriolis-Stokes forcing (CSF) computed using the wave parameters from SWAN was incorporated with the momentum equation of POMgcs as the core coupling process. Experimental results in an idealized setting show that under the steady state, the scale of the speed of CSF-driven current was 0.001 m/s and the maximum reached 0.02 m/s. The Stokes drift-induced energy rate input into the model ocean was estimated to be 28.5 GW, taking 14% of the direct wind energy rate input. Considering the Stokes drift effects, the total mechanical energy rate input was increased by approximately 14%, which highlights the importance of CSF in modulating the upper ocean circulation. The actual run conducted in Taiwan Adjacent Sea (TAS) shows that: 1) CSF-based wave-current coupling has an impact on ocean surface currents, which is related to the activities of monsoon winds; 2) wave-current coupling plays a significant role in a place where strong eddies present and tends to intensify the eddy's vorticity; 3) wave-current coupling affects the volume transport of the Taiwan Strait (TS) throughflow in a nontrivial degree, 3.75% on average.