The solutions q[n] generated from a periodic "seed" q = cei(as+bt) of t:he nonlinear SchrS- dinger (NLS) by n-fold Darboux transformation is represented by determinant. Furthermore, the s-periodic solution and t-periodic solution are given explicitly by using q[1]. The curves and surfaces (F1, F2, F3) associated with q[n] are given by means of Sym formula. Meanwhile, we show periodic and asymptotic properties of these curves.