The bionanocomposites of soy protein isolate(SPI)/montmorillonite(MMT) have been prepared successfully via simple melt mixing,in which MMT was used as nanofiller and glycerol was used as plasticizer.Their structures and properties were characterized with X-ray diffraction(XRD),differential scanning calorimetry(DSC),scanning electron microscopy(SEM),thermogravimetric analysis and tensile testing.XRD、TEM and SEM results indicated that the MMT layers could be easily intercalated by the SPI matrix even by simpl...
Three types of high-density polyethylene (HDPE) with different molecular weights (high, medium and low) were adopted to evaluate the influence of matrix molecular weight on the structure-property relation of injection-molded HDPE/mica composites through a combination of SEM, 2d-WAXS, DSC, DMA and tensile testing. Various structural factors including orientation, filler dispersion, interfacial interaction between HDPE and mica, etc., which can impact the macroscopic mechanics, were compared in detail among the three HDPE/mica composites. The transcrystallization of HDPE on the mica surface was observed and it exhibited strong matrix molecular weight dependence. Obvious transcrystalline structure was found in the composite with low molecular weight HDPE, whereas it was hard to be detected in the composites with increased HDPE molecular weight. The best reinforcement effect in the composite with low molecular weight HDPE can be understood as mainly due to substantially improved interfacial adhesion between matrix and mica filler, which arises from the transcrystallization mechanism.
Low density polyethylene(LDPE)/lignin blends were prepared using melt blending.Two kinds of compatibilizers, ethylene-vinylacetate(EVA) which is softer than LDPE and polyethylene grafted with maleic anhydride(PE-g-MA) which is harder than LDPE were used to improve the interfacial adhesion.Scanning electron microscope(SEM) was used to investigate the dispersion of lignin in LDPE matrix.The results showed that both of the compatibilizers could improve the interaction between the low density polyethylene and l...
A relatively high predetermined crystallization temperature (135℃) was chosen to grow well developed iPP spherulites, then the partial melting was carried out at a temperature of 165℃, where the preformed spherulites were seen to only decrease their size but not completely melted. The crystallization behavior of partially melted isotactic polypropylene (iPP) has been carefully examined by different scanning calorimetry (DSC) and polarized light microscopy (PLM). The experimental results show that at a special annealing temperature (165℃) the melting behavior of iPP includes two parts with different mechanism, one part is the melting of iPP spherulite outside, another is the partial lamellae perfection during longer annealing time in the unmelted spherulite. The conformational orders of the iPP melt decrease with the increase of the annealing temperature.
A simultaneous increase of both stiffness and extensibility ofpoly(ethylene glycol-co-cyclohexane-1,4-dimethanol terephthalate) (PETG)/polycarbonate (PC) blends prepared through the slit die extrusion-uniaxial cold stretching process was observed. The stretched sheets have a unique mechanical character that an increased tensile modulus is accompanied by an increased extensibility with increasing the draw ratio. Especially, a sharp increasing of the extensibility is observed for PETG/PC (70/30 wt%) blends at draw ratios between 8.2 and 20.0, where a nine times increase of extensibility is achieved. The mechanism of stretching-induced superior extensibility is investigated via micrograph observation, rheometry and calorimetric analysis. The observed superior extensibility could be tentatively explained by the bridging effect of the PC microfibrils on the crack development during tensile failure.
Hydrophobic nano silica sol(HNSS)was incorporated into polyvinylmethylsiloxane to prepare reinforced high- temperature vulcanized(HTV)silicone rubber.HTV silicone rubber filled with 40 phr HNSS showed excellent mechanical and optical properties:the tensile strength reached 11.7 MPa and the optical transmittance was higher than 90%.Possible reasons for reinforcement and transparency were discussed on the basis of the bound rubber percentage,total crosslink density,and SEM analysis.Our work suggests that HNSS...
in situ Fibril formation of polyamide-6 (PA6) in isotropic polypropylene (iPP) was first fabricated using a slit die extrusion and hot stretching process. Then the prepared materials were subjected to injection molding in the temperature range higher than the melting temperature of iPP but lower than that of PA6. The obtained injection-molded samples were characterized via scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and two-dimensional wide- angle X-ray scattering (2D-WAXS). Mechanical properties were also investigated. The SEM result shows that the optimum fibril formation could be only achieved in the range of 20 wt% to 30 wt% of PA6 content for the studied system. The fibril morphology changes along the sample thickness in the injection-molded bars. The fibril morphology in the skin layer was better than that in the core layer. 2D-WAXS results showed that the orientation of PP decreased with the increase of PA6 content, which indicated that the orientation of PP was confined by PA6 fibrils. Combined consideration of mechanical properties and morphology indicates that only PP/PA6 composites with 20 wt% of PA6 content show better properties because of the better fibril morphology and PP chain orientation.
The phase morphology and thermal behavior of various isotactic polypropylene (PP)/linear low density polyethylene (LLDPE) blends were investigated with aid of scanning electron microscopy (SEM) and differential scanning calorimetry (DSC), respectively. The effect of barrel (melt) temperature on the morphology, thermal behavior and the resultant mechanical properties of the injection molded bars was the research focus, and the influence of LLDPE composition was also taken into account. It was found that the mechanical properties, especially the tensile ductility and the impact strength, were greatly affected by the processing temperature. The samples obtained at low temperatures had the highest elongation at break and impact strength, while those molded at high temperatures had the poorest toughness. Two reasons were responsible for that: first, the phase size in the samples increased with the processing temperature; second, possible orientation existed in the samples obtained at low processing temperatures.