您的位置: 专家智库 > >

国家自然科学基金(s41102055)

作品数:4 被引量:33H指数:2
发文基金:国家自然科学基金国家重点基础研究发展计划更多>>
相关领域:天文地球更多>>

文献类型

  • 4篇中文期刊文章

领域

  • 4篇天文地球

主题

  • 3篇PB-ZN
  • 3篇SW_CHI...
  • 2篇地球化
  • 2篇地球化学
  • 2篇同位素
  • 2篇同位素地球化...
  • 2篇GUIZHO...
  • 1篇地质
  • 1篇玄武岩
  • 1篇岩石
  • 1篇氧同位素
  • 1篇碳氧同位素
  • 1篇综合地质
  • 1篇基底
  • 1篇基底岩石
  • 1篇峨眉山玄武岩
  • 1篇PROVIN...
  • 1篇SOURCE...
  • 1篇SOUTHW...
  • 1篇STRONT...

传媒

  • 2篇Acta G...
  • 1篇Acta G...
  • 1篇Journa...

年份

  • 1篇2014
  • 3篇2013
4 条 记 录,以下是 1-4
排序方式:
Strontium isotopic geochemistry of Tianqiao Pb-Zn deposit, Southwest China
2014年
Tianqiao carbonate-hosted Pb-Zn deposit, controlled by NW-trending F37 thrust fault and NW-trending Tianqiao anticline, is located in the eastern part of Sichuan-Yunnan-Guizhou(SYG) Pb-Zn metallogenic province, southwestern Yangtze Block, southwest China. Ore bodies in this deposit are hosted in the Devonian-Carboniferous carbonate rocks, and ore minerals include sphalerite, galena and pyrite, while the gangue minerals are dominated by calcite and dolomite. Using high–precision solid thermal ionization mass spectrometry(TIMS), this paper reports the strontium isotopic compositions(0.7119 to 0.7167) of sulfide samples from the Tianqiao deposit in order to trace the origin of hydrothermal fluids. Compared with the country rocks, the calculated 87Sr/86Sr200 Ma values of sulfide range from 0.7118 to 0.7130, higher than those of the age-corrected Devonian to Permian sedimentary rocks(0.7073 to 0.7101) and the Middle Permian Emeishan flood basalts(0.7078 to 0.7039), but lower than those of the age-corrected Proterozoic basement rocks(such as the Kunyang and Huili Groups, 87Sr/86Sr200 Ma=0.7243 to 0.7288). This implies a mixed strontium source between the older basement rocks and the younger cover sequences. Together with geologic and previous isotopic evidences, we considered that the fluids' mixing is a possible mechanism for sulfide precipitation in the Tianqiao deposit.
DOU SongLIU JishunZHOU Jiaxi
关键词:同位素地球化学峨眉山玄武岩基底岩石
Sources and Thermo-Chemical Sulfate Reduction for Reduced Sulfur in the Hydrothermal Fluids, Southeastern SYG Pb-Zn Metallogenic Province, SW China被引量:25
2013年
Located on the western Yangtze Block, the Sichuan (四川)-Yunnan (云南)-Guizhou (贵州) (SYG) Pb-Zn metallogenic province has been a major source of base metals for China. In the south- eastern SYG province, structures are well developed and strictly control about 100 Pb-Zn deposits. Al- most all the deposits are hosted in Devonian to Permian carbonate rocks. Lead-zinc ores occur either as veinlets or disseminations in dolomitic rocks with massive and disseminated textures. Ore minerals are composed of pyrite, sphalerite and galena, and gangue minerals are calcite and dolomite. Sulfide min- erals from four typical Pb-Zn deposits are analyzed for sulfur isotope compositions to trace the origin and evolution of hydrothermal fluids. The results show that 034S values of sulfide minerals range from +3.50%0 to +20.26%0, with a broad peak in +10%0 to +16%0, unlike mantle-derived sulfur (0±3%0). How- ever, the mean δ34Ssulflde and δ34S∑s-fluids values are similar to that of sulfate-bearing evaporites in the host rocks (gypsum: -+15%0 and barite: +22%0 to +28%0) and Cambrian to Permian seawater sulfate (+15%0 to +35%0). This suggests that reduced sulfur in hydrothermal fluids was likely derived from evaporates in the host rocks by thermo-chemical sulfate reduction (TSR). Calculated δ34S∑s-fluids values of the Shanshulin (杉树林), Qingshan (青山), Shaojiwan (筲箕湾) and Tianqiao (天桥) Pb-Zn deposits are +21.59‰, +18.33‰, +11.4‰ and +10.62‰, respectively, indicating sulfur-bearing hydrothermal fluids may be evolved from the Shanshulin to Qingshan and then the Shaojiwan to Tianqiao deposition sites along the Yadu (垭都)-Ziyun (紫云) lithospheric fracture in the southeastern SYG province.
周家喜黄智龙包广萍高建国
关键词:TSR
Geology and C-O isotope geochemistry of carbonate-hosted Pb-Zn deposits, NW Guizhou Province, SW China被引量:1
2013年
The Pb-Zn metallogenic district in NW Guizhou Province is an important part of the Yun-nan-Sichuan-Guizhou Pb-Zn metallogenic province, and also is one of the most important Pb-Zn producers in China. The hosting rocks of the Pb-Zn deposits are Devonian to Permian carbonate rocks, and the basement rocks are meta-sedimentary and igneous rocks of the Proterozoic Kunyang and Huili groups. The ore minerals are composed of sphalerite, galena and pyrite, and the gangue minerals are include calcite and dolomite. Geology and C-O isotope of these deposits were studied in this paper. The results show that δ13C and δ18O values of hydrothermal calcite, altered wall rocks-dolostone, sedimentary calcite and hosting carbonate rocks range from -5.3‰ to -0.6 ‰ (mean -3.4‰) and +11.3‰ to +20.9 ‰ (mean +17.2‰), -3.0‰ to +0.9 ‰ (mean -1.3‰) and +17.0‰ to +20.8‰ (mean +19.7‰), +0.6‰ to +2.5 ‰ (mean +1.4‰) and +23.4‰ to +26.5 ‰ (mean +24.6‰), and -1.8‰ to +3.9‰ (mean +0.7‰) and +21.0‰ to +26.8‰ (mean +22.9‰), respectively, implying that CO2 in the ore-forming fluids was mainly a result of dissolution of Devonian and Carboniferous carbonate rocks. However, it is difficult to evaluate the contribution of sediment de-hydroxylation. Based on the integrated analysis of geology, C and O isotopes, it is believed that the ore-forming fluids of these carbonate-hosted Pb-Zn deposits in this area were derived from multiple sources, including hosting carbonate rocks, Devonian to Permian sedimentary rocks and basement rocks (the Kun-yang and Huili groups). Therefore, the fluids mixing is the main precipitation mechanism of the Pb-Zn deposit in this province.
DOU SongZHOU Jiaxi
关键词:碳氧同位素综合地质同位素地球化学
H-O-S-Cu-Pb Isotopic Constraints on the Origin of the Nage Cu-Pb Deposit, Southeast Guizhou Province, SW China被引量:7
2013年
The Nage Cu-Pb deposit, a new found ore deposit in the southeast Guizhou province, southwest China, is located on the southwestern margin of the Jiangnan Orogenic Belt. Ore bodies are hosted in slate and phyllite of Neoproterozoic Jialu and Wuye Formations, and are structurally controlled by EW-trending fault. It contains Cu and Pb metals about 0.12 million tonnes with grades of 0.2 wt% to 3.4 wt% Cu and 1.1 wt% to 9.27 wt% Pb. Massive and disseminated Cu-Pb ores from the Nage deposit occur as either veinlets or disseminations in silicified rocks. The ore minerals include chalcopyrite, galena and pyrite, and gangue minerals are quartz, sericite and chlorite. The H-O isotopic compositions of quartz, S-Cu-Pb isotopic compositions of sulfide minerals, Pb isotopic compositions of whole rocks and ores have been analyzed to trace the sources of ore-forming fluids and metals for the Nage Cu-Pb deposit. The oSCUNBs values of chalcopyrite range from -0.09% to +0.33%0, similar to basic igneous rocks and chalcopyrite from magmatic deposits. J6SCUNBS values of chalcopyrite from the early, middle and final mineralization stages show an increasing trend due to 63Cu prior migrated in gas phase when fluids exsolution from magma, ja4ScDT values of sulfide minerals range from -2.7‰ to +2.8‰, similar to mantle-derived sulfur (0±3‰). The positive correlation between J65CUNBs and ja4SCDT values of chalcopyrite indicates that a common source of copper metal and sulfur from magma. JDu2o- SMOW and JlSOH2O-SMOW values of water in fluid inclusions of quartz range from -60.7‰ to -44.4‰ and +7.9‰ to +9.0%0 (T=260℃), respectively and fall in the field for magmatic and metamorphic waters, implicating that mixed sources for H20 in hydrothermal fluids. Ores and sulfide minerals have a small range of Pb isotopic compositions (208Pb/204pb=38.152 to 38.384, 207Pb/204Pb=15.656 to 17.708 and 206Pb/204Pb=17.991 to 18.049) that are close to orogenic belt and upper crust Pb evolution curve, and similar to Neoproterozo
ZHOU JiaxiWANG JingsongYANG DezhiLIU Jinhai
共1页<1>
聚类工具0