您的位置: 专家智库 > >

中国博士后科学基金(2012M521336)

作品数:3 被引量:0H指数:0
相关作者:赵增顺赵猛刘小峰曹茂永更多>>
相关机构:河海大学山东科技大学更多>>
发文基金:中国博士后科学基金国家自然科学基金山东省自然科学基金更多>>
相关领域:自动化与计算机技术理学更多>>

文献类型

  • 3篇中文期刊文章

领域

  • 2篇自动化与计算...
  • 1篇理学

主题

  • 1篇与或图
  • 1篇识别方法
  • 1篇MULTIP...
  • 1篇RECOGN...
  • 1篇STOCHA...
  • 1篇TEMPO
  • 1篇VIDEO
  • 1篇EVENTS
  • 1篇PARSIN...
  • 1篇ONLINE

机构

  • 1篇河海大学
  • 1篇山东科技大学

作者

  • 1篇曹茂永
  • 1篇刘小峰
  • 1篇赵猛
  • 1篇赵增顺

传媒

  • 1篇北京理工大学...
  • 1篇Chines...
  • 1篇Journa...

年份

  • 3篇2013
3 条 记 录,以下是 1-3
排序方式:
基于关键原子动作的视频事件学习与识别方法
2013年
提出了一种基于关键原子动作的视频事件学习与识别方法.通过与或图来表示事件、子事件、原子动作之间的层次结构,以及子事件和原子动作间的时序关系,通过最小描述长度准则从训练数据中学习事件的与或图结构.在此基础上,提出了一种事件中关键原子动作的学习方法,根据原子动作的重要性赋予相应的权值,该权值可以用于事件的实时解析,提高事件的识别率.基于原子动作的权值及漏检数目定义了事件的可识别度,用于减少待识别的事件数目,进而提高事件识别的算法效率.多种场景实验结果表明所提出的方法可以有效地进行事件识别.
赵猛曹茂永赵增顺刘小峰
关键词:与或图
Online multiple instance regression
2013年
The multiple instance regression problem has become a hot research topic recently. There are several approaches to the multiple instance regression problem, such as Salience, Citation KNN, and MI-ClusterRegress. All of these solutions work in batch mode during the training step. However, in practice, examples usually arrive in sequence. Therefore, the training step cannot be accomplished once. In this paper, an online multiple instance regression method "OnlineMIR" is proposed. OnlineMIR can not only predict the label of a new bag, but also update the current regression model with the latest arrived bag. The experimental results show that OnlineMIR achieves good performances on both synthetic and real data sets.
王志岗赵增顺张长水
Video events recognition by improved stochastic parsing based on extended stochastic context-free grammar representation
2013年
Video events recognition is a challenging task for high-level understanding of video se- quence. At present, there are two major limitations in existing methods for events recognition. One is that no algorithms are available to recognize events which happen alternately. The other is that the temporal relationship between atomic actions is not fully utilized. Aiming at these problems, an algo- rithm based on an extended stochastic context-free grammar (SCFG) representation is proposed for events recognition. Events are modeled by a series of atomic actions and represented by an extended SCFG. The extended SCFG can express the hierarchical structure of the events and the temporal re- lationship between the atomic actions. In comparison with previous work, the main contributions of this paper are as follows: ① Events (include alternating events) can be recognized by an improved stochastic parsing and shortest path finding algorithm. ② The algorithm can disambiguate the detec- tion results of atomic actions by event context. Experimental results show that the proposed algo- rithm can recognize events accurately and most atomic action detection errors can be corrected sim- ultaneously.
曹茂永赵猛裴明涛赵增顺
共1页<1>
聚类工具0