We define weakly positive tensors and study the relations among essentially positive tensors, weakly positive tensors, and primitive tensors. In particular, an explicit linear convergence rate of the Liu-Zhou-Ibrahim(LZI) algorithm for finding the largest eigenvalue of an irreducible nonnegative tensor, is established for weakly positive tensors. Numerical results are given to demonstrate linear convergence of the LZI algorithm for weakly positive tensors.
We generalize the D-gap function developed in the literature for variational inequalities to a general equilibrium problem (EP). Through the D-gap function, the equilibrium problem is cast as an unconstrained minimization problem. We give conditions under which any stationary point of the D-gap function is a solution of EP and conditions under which it provides a global error bound for EP. Finally, these results are applied to box-constrained EP and then weaker conditions are established to obtain the desired results for box-constrained EP.