A selective solvent vapor, i.e., cyclohexanone or isopropyl benzene, which is a poor solvent for poly(3-hexylthiophene-2,5-diyl) (P3HT) and a good solvent for fullerene derivative [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), was employed to reduce the size of PCBM aggregates and prolong the formation time of big PCBM aggregates in P3HT/PCBM film. PCBM nucleates and aggregates of 10-20 nm scale form in the first few minutes annealing. Then the size of PCBM aggregates kept unchanged until annealing for 60 min. Finally, larger PCBM aggregates of micron-size formed hours later. On the contrary, the growth rate of PCBM aggregates was faster and their size was larger when treated with a good solvent vapor for both components. The P3HT crystallinity was the same with different types of annealing solvents, although the rate of P3HT self-organization was decreased after a selective solvent vapor annealing. Because of the smaller size of phase separation, the device annealed in a selective solvent vapor for 30 min had a higher PCE than that annealed in a good solvent vapor.
A charge carrier mobility of polymer films with the time-of-flight(TOF) technique using a fullerene layer was measured and the TOF photocurrent waveform can be remarkably improved.The 80-nm-thick fullerene layer is functioned as a charge-separation layer(CSL) which was placed between ITO electrode and the polymer layer of MEH-PPV(poly[2-methoxy-5-(2'-ethylhexyloxy) 1,4-phenylenevinylene]).In the CSL,the photo-generated holes and electrons can be efficiently separated,resulting in an enhanced current signal and great improvement of TOF waveform.The sample structure with fullerene layer exhibits a great advantage to measure the hole mobilities of polymers with low energy band gap.
A solution-processed zinc oxide (ZnO) thin film as an electron collection layer for polymer solar cells (PSCs) with an inverted device structure was investigated. Power conversion efficiencies (PCEs) of PSCs made with a blend of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM) are 3.50% and 1.21% for PSCs with and without the ZnO thin film, respectively. Light intensity dependence of the photocurrent and the capacitance-voltage measurement demonstrate that the increased PCEs are due to the restriction of the strong bimolecular recombination in the interface when a thin ZnO layer is inserted between the polymer active layer and the ITO electrode. These results demonstrate that the ZnO thin film plays an important role in the performance of PSCs with an inverted device structure.
YANG TingBinQIN DongHuanLAN LinFengHUANG WenBoGONG XiongPENG JunBiaoCAO Yong
High-brightness and color-stable two-wavelength hybrid white organic light emitting diodes (HWOLEDs) with the configuration of indium tin oxide (ITO)/ N, N, N, N-tetrakis(4-methoxyphenyl)-benzidine (MeO-TPD): tetrafluoro-tetracyanoqino dimethane (F4-TCNQ)/N,N-di(naphthalene-1-yl)-N,N-diphenyl-benzidine (NPB)/ 4,4-N,N-dicarbazolebiphenyl (CBP): iridium (III) diazine complexes (MPPZ) 2 Ir(acac)/NPB/2-methyl-9,10-di(2-naphthyl)anthracene (MADN): p-bis(p-N,N-di-phenyl-aminostyryl)benzene (DSA-ph)/bis(10-hydroxybenzo[h] quino-linato)beryllium complex (Bebq2)/LiF/Al have been fabricated and characterized. The optimal brightness of the device is 69932 cd/m2 at a voltage of 13 V, and the Commission Internationale de l’Eclairage (CIE) chromaticity coordinates are almost constant during a large voltage change of 6–12 V. Furthermore, a current efficiency of 15.3 cd/A at an illumination-relevant brightness of 1000 cd/m2 is obtained, which rolls off slightly to 13.0 cd/A at an ultra high brightness of 50000 cd/m2. We attribute this great performance to wisely selecting an appropriate spacer together with effectively utilizing the combinations of exciton-harvested orange-phosphorescence/blue-fluorescence in the device. Undoubtedly, this is one of the most exciting results in two-wavelength HWOLEDs up to now.
Organic optocoupler(OOC) or organic photocoupler,optical coupler is a novel and one of the most promising organic optoelectronic devices for its well electrical isolation and anti-jamming ability in long-distance and real-time digital communications.The performance parameters of OOC were greatly raised during the past decade,and its development was strongly associated with basic organic devices such as organic light emitting diodes(OLED),organic photodiodes(OPD) and organic phototransistors(OPT) etc.Here we describe the principles of OOC,review recent breakthroughs in this field,and summarize the photosensor and light emitting parts which could be used in the device.Key technical points,such as current transfer ratio,frequency,matching and stability were also discussed in this paper.