Direct numerical simulations were conducted to investigate the behavior of heavy particles in homogeneous isotropic turbulence. The present study focused on the effect of particle inertia and drift on the autocorrelations of the particle velocity and the fluid seen by particles and the dispersion characteristics of particles. The Lagrangian integral time scale of particles monotonically increased as the magnitude of the particle response time increased, while that of the fluid seen by particles remained relatively constant; it reached a maximum when the particle response time was close to the Kolmolgorov time scale of the flow. Particle dispersion increased as the particle inertia increased for small particles, while for larger particles, it decreased as particle inertia increased; particle eddy diffusion coefficient was maximal, and greater than that of the fluid by about 30%, at the preferential concentration. The concentration field of the particles with p/k1.0 showed that particles tend to collect in regions of low vorticity (high strain) due to preferential concentration. As the drift velocity of a particle is increased it crosses the paths of fluid elements more rapidly and will tend to lose correlation with its previous velocity faster than a fluid element will. And the correlation of particle velocities along the drift direction is more persistent than that perpendicular to the direction of drift. Simulations also showed that the continuity effect and the crossing-trajectory effect are weakened for particles with infinite inertia.
Particle-laden flows in a horizontal channel were investigated by means of a two-phase particle image velocimetry (PIV) technique. Experiments were performed at a Reynolds number of 6826 and the flow is seeded with polythene beads of two sizes, 60μm and 110μm. One was slightly smaller than and the other was larger than the Kolmogorov length scale. The particle loadings were relatively low, with mass loading ratio ranging from 5 ×10^-4 to 4 × 10^-2 and volume fractions from 6×10×-7 to 4.8×10^-5, respectively. The results show that the presence of particles can dramatically modify the turbulence even under the lowest mass loading ratio of 5 × 10^-4. The mean flow is attenuated and de- creased with increasing particle size and mass loading. The turbulence intensities are enhanced in all the cases concerned. With the increase of the mass loading, the intensities vary in a complicated manner in the case of small particles, indicating complicated particle-turbulence interactions; whereas they increase monotonously in the case of large particles. The particle velocities and concentrations are also given. The particles lag behind the fluid in the center region but lead in the wall region, and this trend is more prominent for the large particles. The streamwise particle fluctuations are larger than the gas fluctuations for both sizes of particles, however their varying trend with the mass loadings is not so clear. The wallnormal fluctuations increase with increasing mass loadings. They are smaller in the 60μm particle case but larger in the 110μm particle case than those of the gas phase. It seems that the small particles follow the fluid motion to certain extent while the larger particles are more likely dominated by their own inertia. Finally, remarkable non-uniform distributions of particle concentration are observed, especially for the large particles. The inertia of particles is proved to be very important for the turbulence modification and particles behaviors and thus should be considered in horizonta
Yi Wu Hangfeng Wang Zhaohui Liu Jing Li Liqi Zhang Chuguang Zheng