您的位置: 专家智库 > >

国家自然科学基金(11201380)

作品数:13 被引量:26H指数:3
相关作者:周军罗丽容唐亚勇更多>>
相关机构:西南大学四川大学更多>>
发文基金:国家自然科学基金中央高校基本科研业务费专项资金中国博士后科学基金更多>>
相关领域:理学更多>>

文献类型

  • 13篇中文期刊文章

领域

  • 13篇理学

主题

  • 6篇爆破
  • 4篇食饵
  • 4篇食饵模型
  • 4篇捕食-食饵模...
  • 3篇爆破时间
  • 2篇多孔介质方程
  • 2篇抛物
  • 2篇全局渐近
  • 2篇全局渐近稳定
  • 2篇渐近
  • 2篇渐近稳定
  • 2篇功能函数
  • 2篇多重性
  • 2篇非线性
  • 2篇爆破速率
  • 1篇多解
  • 1篇多解性
  • 1篇正解
  • 1篇算子
  • 1篇图灵

机构

  • 10篇西南大学
  • 1篇四川大学

作者

  • 10篇周军
  • 1篇唐亚勇
  • 1篇罗丽容

传媒

  • 7篇西南大学学报...
  • 1篇数学学报(中...
  • 1篇数学物理学报...
  • 1篇宜宾学院学报
  • 1篇Acta M...
  • 1篇Scienc...
  • 1篇中国科学:数...

年份

  • 1篇2022
  • 2篇2020
  • 3篇2017
  • 2篇2016
  • 1篇2015
  • 2篇2014
  • 2篇2013
13 条 记 录,以下是 1-10
排序方式:
Positive solutions for a Lotka-Volterra prey-predator model with cross-diffusion and Holling type-Ⅱ functional response被引量:5
2014年
We consider a Lotka-Volterra prey-predator model with cross-diffusion and Holling type-II functional response.The main concern is the existence of positive solutions under the combined effect of cross-diffusion and Holling type-II functional response.Here,a positive solution corresponds to a coexistence state of the model.Firstly,we study the sufficient conditions to ensure the existence of positive solutions by using degree theory and analyze the coexistence region in parameter plane.In addition,we present the uniqueness of positive solutions in one dimension case.Secondly,we study the stability of the trivial and semi-trivial solutions by analyzing the principal eigenvalue of the corresponding linearized system,and then we characterize the stable/unstable regions of semi-trivial solutions in parameter plane.
ZHOU JunKIM Chan-Gyun
关键词:CROSS-DIFFUSIONUNIQUENESS
含变源的多孔介质方程的解的爆破
2022年
为了研究含变源的多孔介质方程的数学模型的解的爆破现象,对一类含变源的多孔介质方程在初始能量为非正和初始能量为正这两种情形进行研究,得到了在初始能量为非正时模型的解会在有限时间内爆破的结论,建立了在初始能量为正时解的爆破条件,并用反证法对爆破解的爆破时间的上界进行了估计.
郭晋容唐亚勇
关键词:多孔介质方程爆破爆破时间
一类具有修正的Leslie-Gower功能函数的捕食-食饵模型的全局渐近稳定性被引量:4
2014年
研究了一类具有扩散和修正的Leslie-Gower功能函数的捕食-食饵模型的全局渐近稳定性,推广了已有结论.
周军
关键词:捕食-食饵模型全局渐近稳定
具有非线性边界流的多孔介质方程解的爆破时间的下界估计
2016年
研究了一类具有非线性边界流的多孔介质方程.利用能量函数研究了该模型解的爆破时间的下界估计,推广了已有研究结果.
周军
关键词:多孔介质方程非线性边界流爆破时间
具有非线性扩散项的捕食-食饵模型的共存解的多重性被引量:3
2017年
研究了一类具有非线性扩散的捕食-食饵模型,利用分支理论和拓扑度理论研究了该模型共存解的多重性,推广了已有研究结果.
郝爱景周军
关键词:捕食-食饵模型
一类带有分数型交错扩散的捕食-食饵模型的多解性研究被引量:3
2017年
研究了一类具有分数型交错扩散的捕食-食饵模型.此模型用于描述种群栖息地的分化现象.通过分析该模型的线性化问题的特征值问题,并利用分支理论和拓扑度理论研究了该模型的正平衡态解的性质,并得到了正平衡态解的多重性条件,此结论推广并完善了已有的结果.
罗丽容周军
关键词:捕食-食饵模型正解多重性
一类具有自动催化作用和饱和定律的双分子模型的图灵不稳定性和霍普夫分歧被引量:2
2017年
通过分析线性化系统的特征值并利用分歧定理,研究了一类具有自动催化作用和饱和定律的双分子模型的图灵不稳定性和霍普夫分歧,并利用数值模拟的方法证明和解释了理论结果.
周军
一类带有分数拉普拉斯算子的抛物方程的解在任意初始能量下的爆破性被引量:2
2020年
研究了一类带有分数拉普拉斯算子的抛物方程.在任意初始能量的条件下,证明了解在有限时刻爆破,且得到了爆破时间的上界估计.
江蓉华周军
关键词:爆破爆破时间
一类具有多项式型边界记忆项的非线性热方程解的整体存在与爆破
2016年
本文研究一类具有多项式型边界记忆项的非线性热方程的解的长时间行为,首先建立比较原理并证明经典解的局部存在性;接下来利用比较原理和Green函数研究解的整体存在和爆破;最后讨论边界爆破并给出爆破速率估计.
周军
关键词:爆破爆破速率
ON THE CAUCHY PROBLEM FOR A REACTION-DIFFUSION SYSTEM WITH SINGULAR NONLINEARITY被引量:2
2013年
We consider the growth rate and quenching rate of the following problem with singular nonlinearityfor some positive constants b:, b2 (see Theorem 3.3 for the parametersfor some constantsHence, the solution (u, v) quenches at the originx = 0 at the same time '1' (see Theorem 4.3). We also tind various other conditions tor the solution to quench in a finite time and obtain the corresponding decay rate of the solution near the quenching time.
周军
共2页<12>
聚类工具0