您的位置: 专家智库 > >

国家自然科学基金(61175038)

作品数:3 被引量:9H指数:1
相关作者:刘成良李彦明李安生孙旺杜文辽更多>>
相关机构:上海交通大学郑州轻工业学院更多>>
发文基金:国家自然科学基金上海市“科技创新行动计划”国家重点实验室开放基金更多>>
相关领域:金属学及工艺自动化与计算机技术一般工业技术更多>>

文献类型

  • 3篇期刊文章
  • 1篇学位论文

领域

  • 2篇金属学及工艺
  • 1篇动力工程及工...
  • 1篇自动化与计算...
  • 1篇一般工业技术

主题

  • 2篇RESIST...
  • 1篇旋转机械
  • 1篇旋转机械故障
  • 1篇旋转机械故障...
  • 1篇蚁群
  • 1篇支持向量
  • 1篇支持向量数据...
  • 1篇数据描述
  • 1篇全景
  • 1篇向量
  • 1篇镜像
  • 1篇聚类
  • 1篇聚类方法
  • 1篇均值聚类
  • 1篇类方
  • 1篇机械故障
  • 1篇机械故障诊断
  • 1篇故障诊断
  • 1篇风力机
  • 1篇MULTI

机构

  • 3篇上海交通大学
  • 1篇郑州轻工业学...

作者

  • 2篇刘成良
  • 1篇赵阳
  • 1篇陶建峰
  • 1篇杜文辽
  • 1篇孙旺
  • 1篇李安生
  • 1篇李彦明
  • 1篇贡亮
  • 1篇王双园

传媒

  • 1篇上海交通大学...
  • 1篇Journa...
  • 1篇Transa...

年份

  • 1篇2017
  • 3篇2012
3 条 记 录,以下是 1-4
排序方式:
Multi-field dynamic modeling and numerical simulation of aluminum alloy resistance spot welding被引量:1
2012年
In order to explore the influence of welding parameters and to investigate the Al alloy (AA) nugget formation process, a comprehensive model involving electrical-thermal-mechanical and metallurgical analysis was established to numerically display the resistance spot welding (RSW) process within multiple fields and understand the AA-RSW physics. A multi-disciplinary finite element method (FEM) framework and a empirical sub-model were built to analyze the affecting factors on weld nugget and the underlying nature of welding physics with dynamic simulation procedure. Specifically, a counter-intuitive phenomenon of the resistance time-variation caused by the transient inverse virtual variation (TIVV) effect was highlighted and analyzed on the basis of welding current and temperature distribution simulation. The empirical model describing the TIVV phenomenon was used for modifying the dynamic resistance simulation during the AA spot welding process. The numerical and experimental results show that the proposed multi-field FEM model agrees with the measured AA welding feature, and the modified dynamic resistance model captures the physics of nugget growth and the electrical-thermal behavior under varying welding current and fluctuating heat input.
陶建峰贡亮刘成良赵阳
Self-Organizing Map Based Quality Assessment for Resistance Spot Welding with Featured Electrode Displacement Signals
2012年
To classify the quality of the resistance spot welding process, a relationship between the welder electrode displacement curve characteristics and the weld shear force has been explored. Eleven statistical features of the displacement signMs are extracted to represent the welding quality. Self-organizing map (SOM) neural networks have been employed to discover their quantitative relationship. In order to identify the influence of various displacement curve features, all of the available combinations have been used as inputs for SOM neural networks. Further we analyze the impact of each feature on the classification results, yielding the best quality-indicative combination of characteristics. There is no determinant relationship between the welding quality and the level of expulsion rate. The quality of welding is most impacted by the maximum electrode displacement, the span of welding process and the centroid of the electrode displacement curve. The experiments show that SOM is feasible to assess the welding quality and can render the visualized intuitive evaluation results.
王双园贡亮刘成良
基于蚁群SVDD和聚类方法的旋转机械故障诊断被引量:8
2012年
针对典型故障样本缺乏而使常规机器学习方法无法直接应用的难题,提出了一个基于支持向量数据描述(SVDD)新异类检测与基于Davies Bouldin指数(DBI)的K均值聚类方法相结合的旋转机械故障诊断框架.首先,针对正常状态样本建立SVDD模型,并利用蚁群算法对SVDD模型参数进行优化;然后,当拒绝样本数目累积到设定的阈值时,利用K均值聚类方法对其进行处理而获得能够进行标记的类别,其中,K均值聚类的类型数目由DBI辅助确定;最后,针对所标记的各类样本,分别建立SVDD模型并进行训练,将SVDD分类器按照二叉树形式构建系统状态的完整诊断模型.同时,利用滚动轴承多故障模式样本进行训练测试,以验证所提出算法的有效性.结果表明,所提出算法的训练速度为常规网格搜索算法的近10倍,DBI能够有效确定聚类的数目,对样本状态的识别率达到100%.
杜文辽李安生孙旺李彦明刘成良
关键词:K均值聚类旋转机械故障诊断
风力机健康状态监测及评估关键技术研究
风力机是复杂的机电一体化装备,需要高效的监测维护系统来保障其服役的安全性、可靠性和经济性。由于风力机服役工况复杂、环境严酷、维护困难,现有的状态监测与评估理论不能满足风电产业对风力机近零故障运行的需求。基于设备状态的智能...
王双园
共1页<1>
聚类工具0