A surge number of models has been proposed to model the Internet in the past decades. However, the issue on which models are better to model the Internet has still remained a problem. By analysing the evolving dynamics of the Internet, we suggest that at the autonomous system (AS) level, a suitable Internet model, should at least be heterogeneous and have a linearly growing mechanism. More importantly, we show that the roles of topological characteristics in evaluating and differentiating Internet models are apparently over-estimated from an engineering perspective. Also, we find that an assortative network is not necessarily more robust than a disassortative network and that a smaller average shortest path length does not necessarily mean a higher robustness, which is different from the previous observations. Our analytic results are helpful not only for the Internet, but also for other general complex networks.
In circadian rhythm generation, intercellular signaling factors are shown to play a crucial role in both sustaining intrinsic cellular rhythmicity and acquiring collective behaviours across a population of circadian neurons. However, the physical mechanism behind their role remains to be fully understood. In this paper, we propose an indirectly coupled multicellular model for the synchronization of Drosophila circadian oscillators combining both intracellular and intercellular dynamics. By simulating different experimental conditions, we find that such an indirect coupling way can synchronize both heterogeneous self-sustained circadian neurons and heterogeneous mutational damped circadian neurons. Moreover, they can also be entrained to ambient light-dark (LD) cycles depending on intercellular signaling.