There is difficulty for distinguishing of river and shadow in Synthetic Aperture Radar (SAR) images. A method of river segmentation in SAR images based on wavelet energy and gradient is proposed in this paper. It mainly includes two algorithms: coarse segmentation and refined segmen- tation. Firstly, The river regions are coarsely segmented by the wavelet energy feature,and then refined segmented accurately by the gradient threshold which is got adaptively. The experimental results show the validity of the method, which provides a good foundation for targets detection above the river.
利用双树复数小波变换(Dual Tree Complex Wavelet Transform,DTCWT)的近似平移不变性和多方向选择性,提出了一种基于DTCWT变换的SAR图像噪声抑制方法。首先对无噪声污染图像的复数小波系数的统计概率分布进行建模;然后利用此先验概率模型,采用最大后验概率方法从含噪小波系数中估计出无噪声污染的小波系数;最后经重构得到滤波后的图像。实验结果表明,此方法优于其他一些相干斑抑制方法。
This paper presents an adaptive method of objects and shadows detection in video streams. Models of background are firstly set up and adaptively updated in Hue Saturation Intensity (HSI) color space to detect motion regions. Then, detection errors are dealt with by motion continuity and velocity consistency. Finally, cast shadows are removed by the generic properties of luminance, chrominance and gradient density. Experimental results and their evaluation are presented to verify the effectiveness of this new method.