Privacy-preserving computational geometry is a special secure multi-party computation and has many applications. Previous protocols for determining whether a point is inside a circle are not secure enough. We present a two-round protocol for computing the distance between two private points and develop a more efficient protocol for the point-circle inclusion problem based on the distance protocol. In comparison with previous solutions, our protocol not only is more secure but also reduces the number of communication rounds and the number of modular multiplications significantly.
分析了两种有效的可验证秘密共享方案:Feldman s VSS方案和Pedersen s VSS方案。但是它们都是门限方案,当推广到一般接入结构时,效率都很低。为此,提出了一个一般接入结构上的可验证秘密共享方案。参与者的共享由秘密分发者随机生成,采用秘密信道发送。每个授权子集拥有一个的公开信息,通过公开的信息,参与者能够验证属于自己份额的共享的有效性。该方案具有两种形式:一种是计算安全的,另一种是无条件安全的。其安全性分别等同于Feldman sVSS方案和Pedersen sVSS方案,但在相同的安全级别下,新方案更有效。