This paper presented a numerical approach to solving the problem of a flat-ended punch in contact with a half-space matrix embedded with multiple three dimensional arbitrary-shaped inhomogeneities.Based on the semi-analytical method(SAM)and the equivalent inclusion method,numerical procedures were developed and the effects of inclusion shape and distribution were analyzed.Fast Fourier transform technique was implemented to accelerate the calculation of surface deformation and subsurface stress.Interactions of inter-inclusions and inclusion-matrix were taken into account.Numerical results showed the presence of inhomogeneities(i.e.,microstructures in solids)indeed had a great effect on local contact pressure and a strong disturbance to the subsurface stress field in the vicinity of inclusions.The effects were dependent on the shape and distribution of inclusions and inter-inclusion interactions.The physical significance of this study is to provide an insight into the relation between the material microstructure and its response to the external load,and the solution approach and procedures may find useful applications,for example,the analysis of fatigue and crack propagation for composite materials,prediction of stress field in solids containing material defects,and study of the mechanism of chemical-mechanical polish(CMP)for inhomogeneous materials,etc.
WANG LeiWANG WenZhongWANG ZhanJiangWANG HuiMA TianBaoHU YuanZhong
Laser hot wire cladding, with the prominent features of low heat input, high energy efficiency, and high precision, is widely used for remanufacturing metal parts. The cladding process, however, needs to be improved by using a quantitative method. In this work, volumetric defect ratio was proposed as the criterion to describe the integrity of forming quality for cladding layers. Laser deposition experiments with FV520B, one of martensitic stainless steels, were designed by using the Taguchi method. Four process variables, namely, laser power (P), scanning speed (Vs), wire feed rate (Vf), and wire current (/), were optimized based on the analysis of signal-to-noise (S/N) ratio. Metallurgic observation of cladding layer was conducted to compare the forming quality and to validate the analysis method. A stable and continuous process with the optimum parameter combination produced uniform microstructure with minimal defects and cracks, which resulted in a good metallurgical bonding interface.
Zilin HUANGGang WANGShaopeng WEIChanghong LIYiming RONG