Diffractive optical elements such as the complementary Dammann gratings are incorporated for dynamic optical fiber splitting and combining. Experimental results of 1×8 dynamic optical couplings are presented.
Changhe Zhou Xin Zhao Liren Liu(Shanghai Institute of Optics and Fine Mechanics, Academia Sinica, P. R. China, Tel: 86-21-59911864,Fax:86-21-59536156, E-mail: chazhou@mail.shcnc.ac.cn)
This paper investigates the influences of phase shift on superresolution performances of annular filters. Firstly, it investigates the influence of phase shift on axial superresolution. It proves theoretically that axial superresolution can not be obtained by two-zone phase filter with phase shift n, and it gets the phase shift with which axial superresolution can be brought by two-zone phase filter. Secondly, it studies the influence of phase shift on transverse superresolution. It finds that the three-zone phase filter with arbitrary phase shift has an almost equal optimal transverse gain to that of commonly used three-zone phase filter, but can produce a much higher axial superresolution gain. Thirdly, it investigates the influence of phase shift on three-dimensional superresolution. Three-dimensional superresolution capability and design margin of three-zone complex filter with arbitrary phase shift are obtained, which presents the theoretical basis for three-dimensional superresolution design. Finally, it investigates the influence of phase shift on focal shift. To obtain desired focal shifts, it designs a series of three-zone phase filters with different phase shifts. A spatial light modulator (SLM) is used to implement the designed filters. By regulating the voltage imposed on the SLM, an accurate focal shift control is obtained,