Satellite-station two-way time comparison is a typical design in Beidou System(BDS)which is significantly different from other satellite navigation systems.As a type of two-way time comparison method,BDS time synchronization is hardly influenced by satellite orbit error,atmosphere delay,tracking station coordinate error and measurement model error.Meanwhile,single-way time comparison can be realized through the method of Multi-satellite Precision Orbit Determination(MPOD)with pseudo-range and carrier phase of monitor receiver.It is proved in the constellation of 3GEO/2IGSO that the radial orbit error can be reflected in the difference between two-way time comparison and single-way time comparison,and that may lead to a substitute for orbit evaluation by SLR.In this article,the relation between orbit error and difference of two-way and single-way time comparison is illustrated based on the whole constellation of BDS.Considering the all-weather and real-time operation mode of two-way time comparison,the orbit error could be quantifiably monitored in a real-time mode through comparing two-way and single-way time synchronization.In addition,the orbit error can be predicted and corrected in a short time based on its periodic characteristic.It is described in the experiments of GEO and IGSO that the prediction accuracy of space signal can be obviously improved when the prediction orbit error is sent to the users through navigation message,and then the UERE including terminal error can be reduced from 0.1 m to 0.4 m while the average accuracy can be improved more than 27%.Though it is still hard to make accuracy improvement for Precision Orbit Determination(POD)and orbit prediction because of the confined tracking net and the difficulties in dynamic model optimization,in this paper,a practical method for orbit accuracy improvement is proposed based on two-way time comparison which can result in the reflection of orbit error.
HE FengZHOU ShanShiHU XiaoGongZHOU JianHuaLIU LiGUO RuiLI XiaoJieWU Shan
With the successful launch and official commissioning of China's first dynamic ocean environment satellite Haiyang-2(HY-2),China's capabilities for oceanic environment monitoring and oceanic resource detecting have been further improved and enhanced.Precise tracking and orbit determination are not only key technical concerns in the ocean dynamic environment satellite project but also necessary conditions for carrying out related oceanic science research using observational data obtained using spaceborne instruments including radar altimeter.In this study,the current available status of international satellite laser ranging(SLR) monitoring on HY-2 was introduced.Six-months of SLR data from HY-2 were processed to obtain precise satellite orbit information using the dynamic orbit determination method.We carried out a detailed assessment of the SLR orbit accuracy by internal evaluation,comparisons with the orbit derived by the French Doppler orbitography and radio-positioning integrated by satellite(DORIS) system,and station-satellite distance validation.These assessments indicate that the three-dimensional orbital accuracy of HY-2 is about 12.5 cm,and the radial accuracy is better than 3 cm.It provides a good example of the application of international SLR monitoring and precise orbit determination in China's earth observation satellite project.
利用国际卫星导航系统服务以及中国大陆构造环境监测网络的实测数据,构建电离层球谐模型SHAG(Shanghai Astronomical Observatory globalmodel),并与欧洲定轨中心(Center for Orbit Determination in Europe,CODE)提供的电离层数据比较,得到如下结果:11在全球范围内,二者解算的卫星硬件延迟误差的均方根值(root mean square,RMS)为0.11ns,观测站硬件延迟误差的RMS为0.59ns;2)对于中国大陆及邻区,二者电离层总电子含量(total electronic content,TEC)的RMS为2.1TECu(1TECu=0.35ns),但SHAG模型解算观测站TEC更接近GNSS双频解算的结果;31通过与数字测高仪的观测资料比较,发现SHAG模型解算的电离层结果可较好地描述不同观测站区域的电离层变化趋势。综合结果表明,中国大陆构造环境监测网络数据的大量引入改善了SHAG模型的中国区域电离层特性,能较好地描述中国区域电离层空间分布及变化特征。