We design a planar metasurface to modulate the wavefront of a water surface wave(WSW) on a deep sub-wavelength scale. The metasurface is composed of an array of coiling-up-space units with specially designed parameters, and can take on the work of steering the wavefront when it is pierced into water. Like their acoustic counterparts, the modulation of WSW is ascribed to the gradient phase shift of the coiling-up-space units, which can be perfectly tuned by changing the coiling plate length and channel number inside the units. According to the generalized Snell's law, negative refraction and 'driven' surface mode of WSW are also demonstrated at certain incidences. Specially, the transmitted WSW could be efficiently guided out by linking a symmetrically-corrugated channel in 'driven' surface mode. This work may have potential applications in water wave energy extraction and coastal protection.
Photoacoustic imaging (PAl), as an emerging biomedicine diagnostic technique that has been aevelopea quickly in the past decade, inherits the high spatial resolution of ultrasonography in imaging deep tissue and the high sensitivity of optical imaging in evaluating tissue chemical and physiological information. In this paper, after introducing the basic principles of PAl including both photoacoustic tomography and photoacoustic microscopy, we will review some recent progress of PAl in biomedicine and demonstrate the capability of PAl in detecting the chemical compositions and in evaluating the histological microstructures in biological tissue.
Fano resonances in the symmetry-broken gold-SiO2-gold(BGSG)nanotubes and the associated dimers have been investigated based on the finite element method.In the BGSG nanotube,the symmetry breaking induced the interactions of the inner gold core and outer gold nanoshell plasmons of all multipolar orders and hence the red-shifts of the plasmon resonance modes and the enhanced quadrupole mode peaks were observed.The interference of the quadrupole mode peak with the subradiant dipole mode caused a Fano-dip in the scattering spectrum.By increasing the core offset-value in the BGSG nanotube,the Fano dip with low energy showed a red-shift and became deeper.Unexpectedly the plasmon coupling between a GSG nanotube and a BGSG nanotube can lead to two strong Fano dips in the scattering spectra of the dimer.It was further noted that the thin side of the BGSG nanotube located at two sides of the dimer gap can lead to the strong near-field coupling between two BGSG nanotubes and hence a deeper and broader Fano dip.
The speed-of-sound variance will decrease the imaging quality of photoacoustic tomography in acoustically inhomo- geneous tissue. In this study, ultrasound computed tomography is combined with photoacoustic tomography to enhance the photoacoustic tomography in this situation. The speed-of-sound information is recovered by ultrasound computed to- mography. Then, an improved delay-and-sum method is used to reconstruct the image from the photoacoustic signals. The simulation results validate that the proposed method can obtain a better photoacoustic tomography than the conventional method when the speed-of-sound variance is increased. In addition, the influences of the speed-of-sound variance and the fan-angle on the image quality are quantitatively explored to optimize the image scheme. The proposed method has a good performance even when the speed-of-sound variance reaches 14.2%. Furthermore, an optimized fan angle is revealed, which can keep the good image quality with a low cost of hardware. This study has a potential value in extending the biomedical application of photoacoustic tomography.
Unidirectional acoustic transmission has been investigated in an asymmetric bull's eye structure, which consistes of a subwavelength hole with concentric grooves on one side of a thin steel plate. When acoustic waves impinge normally on the groove side of the asymmetric structure, a strong acoustic transmitted energy flux is observed in the frequency range of 400–450 k Hz, while there is no obvious transmitted energy flux in the same frequency range if the acoustic waves impinge normally on the other side. Thus, a remarkable unidirectional acoustic transmission behavior is exhibited by the current structure. With changing the period of the grooves, it is found that the transmitted acoustic energy flux keeps unchanged while the frequency of the transmitted waves can be modified. The experiments are performed, which has confirmed the unidirectional acoustic transmission behavior in the asymmetric bull's eye structure. The asymmetric bull's eye structure may have potential application in ultrasound diagnosis and therapy.
Extraordinary acoustic transmission (EAT) has been investigated in a tunable bull's eye structure. We demonstrate that the transmission coefficient of acoustic waves can be modulated by a grating structure. When the grating is located at a distance of 0.5 mm from the base plate, the acoustic transmission shows an 8.77-fold enhancement compared to that by using a traditional bull's eye structure. When the distance increases to 1.5 mm, the transmission approaches zero, indicating a total reflection. Thus, we can make an efficient modulation of acoustic transmission from 0 to 877%. The EAT effects have been ascribed to the coupling of structure-induced resonance with the diffractive wave and the waveguide modes, as well as the Fabry-Perot resonances. As a potential application, the modulation of far-field collimation is illustrated in the proposed bull's eye structure.