Low dimensional Si materials have attracted much attention because they can be developed in many kinds of new-generation nano-electronic and optoelectronic devices, among which Si nanocrystals-based mul- tilayered material is one of the most promising candidates and has been extensively studied. By using multilayered structures, the size and distribution of nanocrystals as well as the barrier thickness between two adjacent Si nano- crystal layers can be well controlled, which is beneficial to the device applications. This paper presents an over- view of the fabrication and device applications of Si nanocrystals, especially in luminescent and photovoltaic devices. We first introduce the fabrication methods of Si nanocrystals-based multilayers. Then, we systematically review the utilization of Si nanocrystals in luminescent and photovoltaic devices. Finally, some expectations for further development of the Si nanocrystals-based photonic and photovoltaic devices are proposed.
Nano-structured photon management is currently an interesting topic since it can enhance the optical absorption and reduce the surface reflection which will improve the performance of many kinds of optoelectronic devices, such as Si-based solar cells and light emitting diodes. Here, we report the fabrication of periodically nano-patterned Si structures by using polystyrene nano-sphere lithography technique. By changing the diameter of nano-spheres and the dry etching parameters, such as etching time and etching power, the morphologies of formed Si nano-structures can be well controlled as revealed by atomic force microscopy.A good broadband antireflection property has been achieved for the formed periodically nano-patterned Si structures though they have the low aspect ratio(<0.53). The reflection can be significantly reduced compared with that of flat Si substrate in a wavelength range from 400 nm to 1200 nm. The weighted mean reflection under the AM1.5 solar spectrum irradiation can be as low as 3.92% and the corresponding optical absorption is significantly improved, which indicates that the present Si periodic nano-structures can be used in Si-based thin film solar cells.
Eu3+ions embedded in silica thin films codoped with SnO2 nanocrystals were fabricated by sol–gel and spin-coating methods.SnO2 nanocrystals with controllable sizes were synthesized through precisely controlling the Sn concentrations.The influences of doping and annealing conditions on the photoluminescence intensity from SnO2 nanocrystals are systematically investigated.The effective energy transfer from the defect states of SnO2nanocrystals to nearby Eu3+ions has revealed by the selective photoluminescence excitation spectra.The efficiency of the Forster resonance energy transfer is evaluated by the time-resolved photoluminescence measurements,which is about 29.1%based on the lifetime tests of the SnO2emission.
Si quantum dots (Si QDs)/SiC multilayers were fabricated by annealing hydrogenated amorphous Si/ SiC stacked structures prepared in plasma enhanced chemical vapor deposition (PECVD) system. The micro- structures were examined by transmission electron micro- scopy (TEM) and Raman spectroscopy, and results demonstrate the formation of Si QDs. Moreover, p-i-n devices containing Si QDs/SiC multilayers were fabri- cated, and their photovoltaic property was investigated. It was found that these devices show the good spectral response in a wide wavelength range (400-1200 nm). And it was also observed that by reducing the thickness of SiC layer from 4 to 2 nm, the external quantum efficiency was obviously enhanced and the short circuit current density (Jsc) was increased from 17.5 to 28.3 mA/cm2, indicating the collection efficiency of photo-generated carriers was improved due to the reduced SiC barriers.
Yun-Qing CAO Xin XU Shu-Xin LI Wei LI Jun XU Kunji CHEN