您的位置: 专家智库 > >

国家自然科学基金(s20802025)

作品数:3 被引量:0H指数:0
发文基金:国家自然科学基金更多>>
相关领域:化学工程理学农业科学更多>>

文献类型

  • 3篇中文期刊文章

领域

  • 3篇化学工程
  • 2篇理学
  • 1篇农业科学

主题

  • 1篇SYNTHE...
  • 1篇ALDOL_...
  • 1篇DERIVA...
  • 1篇DETERM...
  • 1篇ED
  • 1篇FREE_E...
  • 1篇HERBIC...
  • 1篇MOLECU...
  • 1篇AS
  • 1篇ORGANO...
  • 1篇PROLIN...
  • 1篇RESIDU...
  • 1篇NOVEL
  • 1篇POACEA...
  • 1篇DIPEPT...

传媒

  • 3篇Chemic...

年份

  • 2篇2010
  • 1篇2009
3 条 记 录,以下是 1-3
排序方式:
Analysis of a Critical Residue Determining Herbicide Efficiency Sensitivity in Carboxyltransferase Domain of Acetyl-CoA Carboxylase from Poaceae by Homology Modeling and Free Energy Simulation
2010年
Carboxyltransferase domain(CT) of acetyl-coenzyme A carboxylase(ACCase, EC 6.4.1.2) from a family of Poaceae is an important target of commercial herbicide APPs for controlling grass weed growth. As the abuse of APPs herbicides, the resistant ACCase due to the mutation of a single residue(Ile→Leu), which is located in CT active site, is emergent in many populations and species of Poaceae. So it is urgent to understand the resistant mechanism so as to design new effect herbicides. Herein lies the complex of CT dimmer from Lolium rigidum and herbicide haloxyfop successfully constructed for wild type enzyme and Ile/Leu mutant, respectively, providing a basis for explaining the resistance from microscopic structure. Moreover, the binding free energy difference between wild type and mutant enzymes was predicted in good agreement with the known observation, and the various contributions to it were analyzed, by Molecular mechanics-Poisson-Boltzmann surface area(MM-PBSA) method. The results indicate the van der Waals interaction difference between the protein and inhibitor, -22.94 kJ/mol of CT wild type lower than that of mutant, is the major reason for resistance. Structure analysis further suggests that van der Waals interaction difference is originated from the steric hindrance between the side chain of mutated residue Leu and the chiral methyl group of haloxyfop. All these findings enhance the understanding of resistant mechanism of ACCase to herbicide by Ile/Leu mutation and provide an important clue for the rational design of high effective herbicides.
TAO Jin ZHAO Bo TIAN Xue-mei ZHENG Liang-yu CAO Shu-gui
Proline-based Amino Pyridine Dipeptides as Efficient Organocatalysts for Direct Aldol Reaction
2010年
A series of proline-based amino pyridine dipeptide organocatalysts was synthesized and applied in direct asymmetric intermolecular aldol reaction. These catalysts showed good solubility in organic solvents, good yields (73%--97%) and enantioselectivitives(74%--94%). Among them, dipeptide organocatalyst(2) was found to be the most efficient one for the asymmetric aldol reaction between cyclohexanone and 4-nitrobeznaldehyde. After optimizing the catalytic reaction conditions, we found that the catalyst showed high yield(97%), enantioselectivity(e.e., up to 92%) and anti-diastcreoselectivity(up to 95:5) at mild room temperature without any additives.
GAO Jun-longZHENG Liang-yuZHANG Suo-qinZHANG Xin-minSUN Guo-dongQIN LinLI Yao-xianLIU Qing-wenLI Xiao-bo
Synthesis and Herbicidal Activity of Novel Phenoxysulfonylureas Derivatives
2009年
Thirteen novel phenoxysulfonylureas derivatives were synthesized, and their structures were confirmed by MS, NMR and element analysis. The herbicidal activity and structure-activity relationship were also investigated. The results of preliminary active tests indicate that the compounds show moderate herbicidal activity.
ZHANG Xin-minZHENG Liang-yuGAO Jun-longLIU Qing-wenSUN Guo-dongQIN LinZHANG Suo-qin
共1页<1>
聚类工具0