For toe-shooting method, geomaterial constitutive models concerned are studied. Analysis shows that, although extensively applied in soil mechanics, due to its angular singularity of yielding surface, the Mohr-Coulomb model is not suitable for numerical simulations in large deformation; in this case the rock-fills may be regarded as the Drucker-Prager model and the seaooze as the Prandtl-Reuss model. By comparing experimental data with numerical results, the constitutive model of the seaooze is numerically verified. It shows that, in high strain rate stage forming the blasting crater, the seaooze behaves as ideal non-compressible fluid, while in low strain rate stage during which the reck-fills flow to the blasting crater, the viscosity of the seaooze is negligible.